内存屏障

Barrier函数可以在代码中设置屏障,这个屏障可以阻挡编译器的优化,也可以阻挡处理器的优化。

对于编译器来说,设置任何一个屏障都可以保证:

编译器的乱序优化不会跨越屏障,即屏障前后的代码不会乱序;

在屏障后所有对变量或者地址的操作,都会重新从内存中取值(相当于刷新寄存器中的变量副本)。

而对于处理器来说,根据不同的屏障有不同的表现(以下仅仅列举3种最简单的屏障):

读屏障rmb()
处理器对读屏障前后的取数指令(LOAD)能保证有序,但是不一定能保证其他算术指令或者是写指令的有序。对于读指令的执行完成时间也不能保证,即它不能保证在屏障之前的读指令一定都执行完成,只能保证屏障之前的读指令一定能在屏障之后的读指令之前完成。

写屏障wmb()
处理器对屏障前后的写指令(STORE)能保证有序,但是不一定能保证其他算术指令或者是读指令的有序。对于写指令的执行完成时间也不能保证,即它不能保证在屏障之前的写指令一定都执行完成,只能保证屏障之前的写指令一定能在屏障之后的写指令之前完成。

通用内存屏障mb()
处理器保障只有屏障之前的访存操作(包括读写)都完成以后才会执行屏障之后的访存操作。即可以保障读写之间的有序(但是同样无法保证指令完成的时间)。这种屏障对处理器的执行单元效率产生的负面影响要比单纯用读屏障或者写屏障来的大。比如对于PowerPC来说这种通用屏障通常是使用sync指令实现的,在这种情况下处理器会丢弃所有预取的指令并清空流水线。所以频繁使用内存屏障会降低处理器执行单元的效率。

对于驱动开发者来说,一些对设备寄存器的操作,通常是必须保证有序的。在绝大部分情况下,一般都是写操作。对于有序的写操作,必须设置写屏障(wmb):

例:在驱动中使用写屏障

/* Mask out everything */ im_intctl->ic_simrh = 0x00000000; im_intctl->ic_simrl = 0x00000000;
wmb(); 
/* Ack everything */ im_intctl->ic_sipnrh = 0xffffffff;im_intctl->ic_sipnrl = 0xffffffff;
这是一个对中断控制器操作的例子。在设置两个mask寄存器的值的时候,这两个写操作没有顺序要求,因此可以不加屏障。但是对ack寄存器的设置必须在mask寄存器完成设置以后,所以在中间要加入写屏障wmb()以保证对两组寄存器的写有序。

同样的,对于一系列的只读操作,也可以简单使用rmb()来保证有序。


 注意 
任何一个rmb()或者wmb()都是可以被替换成mb()的。但是因为上面提到过的mb()的效率问题,所以应该只有在同时需要读屏障和写屏障的时候,才建议使用mb()。否则应该根据实际情况来选择合适的屏障。当然,在设备初始化的时候,即使是使用mb()也不会对性能带来什么影响,因为设备一般只会初始化一次。但是在发生很频繁的设备操作(比如网口的收发帧中断等)时,应该考虑到mb()对性能的影响。
 

如果驱动不仅仅需要在单纯的读指令或者写指令之间有序,还需要保证读写指令之间有序的时候,就需要设置mb()屏障了。

你可能感兴趣的:(内存屏障)