第十二周 项目4-利用遍历思想求解图问题(6)

/* 
 *Copyright(c) 2015, 烟台大学计算机学院 
 *All rights reserved. 
 *文件名称:利用遍历思想求解图问题(6).cpp 
 *作    者:周洁 
 *完成日期:2015年 11月23日 
 *版 本 号: 
 * 

 *问题描述:求不带权连通图G中从顶点u到顶点v的一条最短路径。

 *输入描述:若干数据

 *输出描述:最短路径

*/

 

代码:

(1)头文件:图基本算法

(2)源文件:

#include <stdio.h>
#include <malloc.h>
#include "graph.h"

void ArrayToList(int *Arr, int n, ALGraph *&G)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    G->n=n;
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素
        for (j=n-1; j>=0; j--)
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=Arr[i*n+j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }

    G->e=count;
}



typedef struct
{
    int data;                   //顶点编号
    int parent;                 //前一个顶点的位置
} QUERE;                        //非环形队列类型

void ShortPath(ALGraph *G,int u,int v)
{
    //输出从顶点u到顶点v的最短逆路径
    ArcNode *p;
    int w,i;
    QUERE qu[MAXV];             //非环形队列
    int front=-1,rear=-1;       //队列的头、尾指针
    int visited[MAXV];
    for (i=0; i<G->n; i++)      //访问标记置初值0
        visited[i]=0;
    rear++;                     //顶点u进队
    qu[rear].data=u;
    qu[rear].parent=-1;
    visited[u]=1;
    while (front!=rear)         //队不空循环
    {
        front++;                //出队顶点w
        w=qu[front].data;
        if (w==v)               //找到v时输出路径之逆并退出
        {
            i=front;            //通过队列输出逆路径
            while (qu[i].parent!=-1)
            {
                printf("%2d ",qu[i].data);
                i=qu[i].parent;
            }
            printf("%2d\n",qu[i].data);
            break;
        }
        p=G->adjlist[w].firstarc;   //找w的第一个邻接点
        while (p!=NULL)
        {
            if (visited[p->adjvex]==0)
            {
                visited[p->adjvex]=1;
                rear++;             //将w的未访问过的邻接点进队
                qu[rear].data=p->adjvex;
                qu[rear].parent=front;
            }
            p=p->nextarc;           //找w的下一个邻接点
        }
    }
}

int main()
{
    ALGraph *G;
    int A[9][9]=
    {
        {0,1,1,0,0,0,0,0,0},
        {0,0,0,1,1,0,0,0,0},
        {0,0,0,0,1,1,0,0,0},
        {0,0,0,0,0,0,1,0,0},
        {0,0,0,0,0,1,1,0,0},
        {0,0,0,0,0,0,0,1,0},
        {0,0,0,0,0,0,0,1,1},
        {0,0,0,0,0,0,0,0,1},
        {0,0,0,0,0,0,0,0,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 9, G);
    ShortPath(G,0,7);
    return 0;
}


运行结果:

 

知识点总结:

图遍历思想的应用

你可能感兴趣的:(第十二周 项目4-利用遍历思想求解图问题(6))