炼数成金 课程
1、监控本地文件夹下的文件信息
</pre><pre name="code" class="java">import org.apache.spark.SparkConf import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.StreamingContext._ object HdfsWordCount { def main(args: Array[String]) { val sparkConf = new SparkConf().setAppName("HdfsWordCount").setMaster("local[2]")//这里指在本地运行,2个线程,一个监听,一个处理数据 // Create the context val ssc = new StreamingContext(sparkConf, Seconds(20))// 时间划分为20秒 val lines = ssc.textFileStream("/home/mmicky/temp/") val words = lines.flatMap(_.split(" ")) val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _) wordCounts.print() ssc.start() ssc.awaitTermination() } }2、 网络socket监控
1)构建socket模拟周期发送数据
import java.io.{PrintWriter} import java.net.ServerSocket import scala.io.Source object SaleSimulation { def index(length: Int) = { //销售模拟器:参数1:读入的文件;参数2:端口;参数3:发送时间间隔ms import java.util.Random val rdm = new Random rdm.nextInt(length) } def main(args: Array[String]) { if (args.length != 3) { System.err.println("Usage: <filename> <port> <millisecond>") System.exit(1) } val filename = args(0) val lines = Source.fromFile(filename).getLines.toList val filerow = lines.length val listener = new ServerSocket(args(1).toInt) while (true) { val socket = listener.accept() new Thread() { override def run = { println("Got client connected from: " + socket.getInetAddress) val out = new PrintWriter(socket.getOutputStream(), true) while (true) { Thread.sleep(args(2).toLong) val content = lines(index(filerow)) println(content) out.write(content + '\n') out.flush() } socket.close() } }.start() } } }
运行:java -cp week5.jar week5.SaleSimulation /home/mmicky/data/spark/people.txt 9999 1000 //从people文件随机读取,发送端口9999,间隔1秒2)sparkStream 监控端
import org.apache.spark.{SparkContext, SparkConf} import org.apache.spark.streaming.{Milliseconds, Seconds, StreamingContext} import org.apache.spark.streaming.StreamingContext._ import org.apache.spark.storage.StorageLevel object NetworkWordCount { def main(args: Array[String]) { val conf = new SparkConf().setAppName("NetworkWordCount").setMaster("local[2]") val sc = new SparkContext(conf) val ssc = new StreamingContext(sc, Seconds(5))//5秒间隔 val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_AND_DISK_SER)// 服务器地址,端口,序列化方案 val words = lines.flatMap(_.split(",")) val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _) wordCounts.print() ssc.start() ssc.awaitTermination() } }3、监控有状态(stateful)
import org.apache.spark.{SparkContext, SparkConf} import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.StreamingContext._ object StatefulWordCount { def main(args: Array[String]) { val updateFunc = (values: Seq[Int], state: Option[Int]) => { //StateFul需要定义的处理函数,第一个参数是本次进来的值,第二个是过去处理后保存的值 val currentCount = values.foldLeft(0)(_ + _)<span style="white-space:pre"> </span>//求和 val previousCount = state.getOrElse(0)<span style="white-space:pre"> </span>// 如果过去没有 即取0 Some(currentCount + previousCount)<span style="white-space:pre"> </span>// 求和<span style="white-space:pre"> </span> } val conf = new SparkConf().setAppName("StatefulWordCount").setMaster("local[2]") val sc = new SparkContext(conf) //创建StreamingContext val ssc = new StreamingContext(sc, Seconds(5)) ssc.checkpoint(".")<span style="white-space:pre"> </span>//因为是有状态的,需要保存之前的信息,所以这里设定了 checkpoint的目录,以防断电后内存数据丢失。 <span style="white-space:pre"> </span>//这里因为没有设置checkpoint的时间间隔,所以会发现每一次数据块过来 即切分一次,产生一个 .checkpoint 文件 //获取数据 val lines = ssc.socketTextStream(args(0), args(1).toInt) val words = lines.flatMap(_.split(",")) val wordCounts = words.map(x => (x, 1)) //使用updateStateByKey来更新状态 val stateDstream = wordCounts.updateStateByKey[Int](updateFunc)<span style="white-space:pre"> </span>//调用 处理函数 updateFunc stateDstream.print() ssc.start() ssc.awaitTermination() } }4、windows操作
import org.apache.spark.{SparkContext, SparkConf} import org.apache.spark.storage.StorageLevel import org.apache.spark.streaming._ import org.apache.spark.streaming.StreamingContext._ object WindowWordCount { def main(args: Array[String]) { val conf = new SparkConf().setAppName("WindowWordCount").setMaster("local[2]") val sc = new SparkContext(conf) //创建StreamingContext val ssc = new StreamingContext(sc, Seconds(5)) ssc.checkpoint(".") // //获取数据 val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_ONLY_SER) val words = lines.flatMap(_.split(",")) //windows操作 val wordCounts = words.map(x => (x , 1)).reduceByKeyAndWindow((a:Int,b:Int) => (a + b), Seconds(args(2).toInt), Seconds(args(3).toInt)) <span style="white-space:pre"> </span>//第二个参数是 windows的窗口时间间隔,比如是 监听间隔的 倍数,上面是 5秒,这里必须是5的倍数。eg :30 <span style="white-space:pre"> </span>//第三个参数是 windows的滑动时间间隔,也必须是监听间隔的倍数。eg :10 <span style="white-space:pre"> </span>//那么这里的作用是, 每隔10秒钟,对前30秒的数据, 进行一次处理,这里的处理就是 word count。 //val wordCounts = words.map(x => (x , 1)).reduceByKeyAndWindow(_+_, _-_,Seconds(args(2).toInt), Seconds(args(3).toInt)) <span style="white-space:pre"> </span>//这个是优化方法, 即加上上一次的结果,减去 上一次存在又不在这一次的数据块的部分。 wordCounts.print() ssc.start() ssc.awaitTermination() } }