linux内核源码阅读之facebook硬盘加速flashcache之六

其实到目前为止,如果对读流程已经能轻松地看懂了,那么写流程不需要太多脑细胞。我觉得再写下去没有太大的必要了,后面想想为了保持flashcache完整性,还是写出来吧。接着到写流程:
[cpp] view plain copy print ?
  1. 1530static void
  2. 1531flashcache_write(struct cache_c *dmc, struct bio *bio)
  3. 1532{
  4. 1533 int index;
  5. 1534 int res;
  6. 1535 struct cacheblock *cacheblk;
  7. 1536 int queued;
  8. 1537
  9. 1538 spin_lock_irq(&dmc->cache_spin_lock);
  10. 1539 res = flashcache_lookup(dmc, bio, &index);
  11. 1540 /*
  12. 1541 * If cache hit and !BUSY, simply redirty page.
  13. 1542 * If cache hit and BUSY, must wait for IO in prog to complete.
  14. 1543 * If cache miss and found a block to recycle, we need to
  15. 1544 * (a) invalidate any partial hits,
  16. 1545 * (b) write to cache.
  17. 1546 */
  18. 1547 if (res != -1) {
  19. 1548 /* Cache Hit */
  20. 1549 cacheblk = &dmc->cache[index];
  21. 1550 if ((cacheblk->cache_state & VALID) &&
  22. 1551 (cacheblk->dbn == bio->bi_sector)) {
  23. 1552 /* Cache Hit */
  24. 1553 flashcache_write_hit(dmc, bio, index);
  25. 1554 } else {
  26. 1555 /* Cache Miss, found block to recycle */
  27. 1556 flashcache_write_miss(dmc, bio, index);
  28. 1557 }
  29. 1558 return;
  30. 1559 }
  31. 1560 /*
  32. 1561 * No room in the set. We cannot write to the cache and have to
  33. 1562 * send the request to disk. Before we do that, we must check
  34. 1563 * for potential invalidations !
  35. 1564 */
  36. 1565 queued = flashcache_inval_blocks(dmc, bio);
  37. 1566 spin_unlock_irq(&dmc->cache_spin_lock);
  38. 1567 if (queued) {
  39. 1568 if (unlikely(queued < 0))
  40. 1569 flashcache_bio_endio(bio, -EIO);
  41. 1570 return;
  42. 1571 }
  43. 1572 /* Start uncached IO */
  44. 1573 flashcache_start_uncached_io(dmc, bio);
  45. 1574 flashcache_clean_set(dmc, hash_block(dmc, bio->bi_sector));
  46. 1575}
1530static void
1531flashcache_write(struct cache_c *dmc, struct bio *bio)
1532{
1533     int index;
1534     int res;
1535     struct cacheblock *cacheblk;
1536     int queued;
1537    
1538     spin_lock_irq(&dmc->cache_spin_lock);
1539     res = flashcache_lookup(dmc, bio, &index);
1540     /*
1541     * If cache hit and !BUSY, simply redirty page.
1542     * If cache hit and BUSY, must wait for IO in prog to complete.
1543     * If cache miss and found a block to recycle, we need to
1544     * (a) invalidate any partial hits,
1545     * (b) write to cache.
1546     */
1547     if (res != -1) {
1548          /* Cache Hit */
1549          cacheblk = &dmc->cache[index];         
1550          if ((cacheblk->cache_state & VALID) &&
1551              (cacheblk->dbn == bio->bi_sector)) {
1552               /* Cache Hit */
1553               flashcache_write_hit(dmc, bio, index);
1554          } else {
1555               /* Cache Miss, found block to recycle */
1556               flashcache_write_miss(dmc, bio, index);
1557          }
1558          return;
1559     }
1560     /*
1561     * No room in the set. We cannot write to the cache and have to
1562     * send the request to disk. Before we do that, we must check
1563     * for potential invalidations !
1564     */
1565     queued = flashcache_inval_blocks(dmc, bio);
1566     spin_unlock_irq(&dmc->cache_spin_lock);
1567     if (queued) {
1568          if (unlikely(queued < 0))
1569               flashcache_bio_endio(bio, -EIO);
1570          return;
1571     }
1572     /* Start uncached IO */
1573     flashcache_start_uncached_io(dmc, bio);
1574     flashcache_clean_set(dmc, hash_block(dmc, bio->bi_sector));
1575}

第1539行查找是否命中,这里有几种情况:
1)命中且cache空闲,直接写cache块并设置DIRTY标志
2)命中且cache忙,等待上一个请求完成
3)不命中并且找到可用的cache块,invalid有交集的cache块,然后再写到cache
4)没有可用cache块,invalid有次的cache块,写到磁盘
第4种情况在第1573行直接写到磁盘,最后调用的还是dm_io_async_bvec。
再看第1种情况,进入到命中处理分支:
[cpp] view plain copy print ?
  1. 1468static void
  2. 1469flashcache_write_hit(struct cache_c *dmc, struct bio *bio, int index)
  3. 1470{
  4. 1471 struct cacheblock *cacheblk;
  5. 1472 struct pending_job *pjob;
  6. 1473 struct kcached_job *job;
  7. 1474
  8. 1475 cacheblk = &dmc->cache[index];
  9. 1476 if (!(cacheblk->cache_state & BLOCK_IO_INPROG) && (cacheblk->head == NULL)) {
  10. 1477 if (cacheblk->cache_state & DIRTY)
  11. 1478 dmc->dirty_write_hits++;
  12. 1479 dmc->write_hits++;
  13. 1480 cacheblk->cache_state |= CACHEWRITEINPROG;
  14. 1481 spin_unlock_irq(&dmc->cache_spin_lock);
  15. 1482 job = new_kcached_job(dmc, bio, index);
  16. 1483 if (unlikely(sysctl_flashcache_error_inject & WRITE_HIT_JOB_ALLOC_FAIL)) {
  17. 1484 if (job)
  18. 1485 flashcache_free_cache_job(job);
  19. 1486 job = NULL;
  20. 1487 sysctl_flashcache_error_inject &= ~WRITE_HIT_JOB_ALLOC_FAIL;
  21. 1488 }
  22. 1489 if (unlikely(job == NULL)) {
  23. 1490 /*
  24. 1491 * We have a write hit, and can't allocate a job.
  25. 1492 * Since we dropped the spinlock, we have to drain any
  26. 1493 * pending jobs.
  27. 1494 */
  28. 1495 DMERR("flashcache: Write (hit) failed ! Can't allocate memory for cache IO, block %lu",
  29. 1496 cacheblk->dbn);
  30. 1497 flashcache_bio_endio(bio, -EIO);
  31. 1498 spin_lock_irq(&dmc->cache_spin_lock);
  32. 1499 flashcache_free_pending_jobs(dmc, cacheblk, -EIO);
  33. 1500 cacheblk->cache_state &= ~(BLOCK_IO_INPROG);
  34. 1501 spin_unlock_irq(&dmc->cache_spin_lock);
  35. 1502 } else {
  36. 1503 job->action = WRITECACHE; /* Write data to the source device */
  37. 1504 DPRINTK("Queue job for %llu", bio->bi_sector);
  38. 1505 atomic_inc(&dmc->nr_jobs);
  39. 1506 dmc->ssd_writes++;
  40. 1507 dm_io_async_bvec(1, &job->cache, WRITE,
  41. 1508 bio->bi_io_vec + bio->bi_idx,
  42. 1509 flashcache_io_callback, job);
  43. 1510 flashcache_unplug_device(dmc->cache_dev->bdev);
  44. 1511 flashcache_clean_set(dmc, index / dmc->assoc);
  45. 1512 }
  46. 1513 } else {
  47. 1514 pjob = flashcache_alloc_pending_job(dmc);
  48. 1515 if (unlikely(sysctl_flashcache_error_inject & WRITE_HIT_PENDING_JOB_ALLOC_FAIL)) {
  49. 1516 if (pjob) {
  50. 1517 flashcache_free_pending_job(pjob);
  51. 1518 pjob = NULL;
  52. 1519 }
  53. 1520 sysctl_flashcache_error_inject &= ~WRITE_HIT_PENDING_JOB_ALLOC_FAIL;
  54. 1521 }
  55. 1522 if (unlikely(pjob == NULL))
  56. 1523 flashcache_bio_endio(bio, -EIO);
  57. 1524 else
  58. 1525 flashcache_enq_pending(dmc, bio, index, WRITECACHE, pjob);
  59. 1526 spin_unlock_irq(&dmc->cache_spin_lock);
  60. 1527 }
  61. 1528}
1468static void
1469flashcache_write_hit(struct cache_c *dmc, struct bio *bio, int index)
1470{
1471     struct cacheblock *cacheblk;
1472     struct pending_job *pjob;
1473     struct kcached_job *job;
1474
1475     cacheblk = &dmc->cache[index];
1476     if (!(cacheblk->cache_state & BLOCK_IO_INPROG) && (cacheblk->head == NULL)) {
1477          if (cacheblk->cache_state & DIRTY)
1478               dmc->dirty_write_hits++;
1479          dmc->write_hits++;
1480          cacheblk->cache_state |= CACHEWRITEINPROG;
1481          spin_unlock_irq(&dmc->cache_spin_lock);
1482          job = new_kcached_job(dmc, bio, index);
1483          if (unlikely(sysctl_flashcache_error_inject & WRITE_HIT_JOB_ALLOC_FAIL)) {
1484               if (job)
1485                    flashcache_free_cache_job(job);
1486               job = NULL;
1487               sysctl_flashcache_error_inject &= ~WRITE_HIT_JOB_ALLOC_FAIL;
1488          }
1489          if (unlikely(job == NULL)) {
1490               /* 
1491               * We have a write hit, and can't allocate a job.
1492               * Since we dropped the spinlock, we have to drain any 
1493               * pending jobs.
1494               */
1495               DMERR("flashcache: Write (hit) failed ! Can't allocate memory for cache IO, block %lu", 
1496                     cacheblk->dbn);
1497               flashcache_bio_endio(bio, -EIO);
1498               spin_lock_irq(&dmc->cache_spin_lock);
1499               flashcache_free_pending_jobs(dmc, cacheblk, -EIO);
1500               cacheblk->cache_state &= ~(BLOCK_IO_INPROG);
1501               spin_unlock_irq(&dmc->cache_spin_lock);
1502          } else {
1503               job->action = WRITECACHE; /* Write data to the source device */
1504               DPRINTK("Queue job for %llu", bio->bi_sector);
1505               atomic_inc(&dmc->nr_jobs);
1506               dmc->ssd_writes++;
1507               dm_io_async_bvec(1, &job->cache, WRITE, 
1508                         bio->bi_io_vec + bio->bi_idx,
1509                         flashcache_io_callback, job);
1510               flashcache_unplug_device(dmc->cache_dev->bdev);
1511               flashcache_clean_set(dmc, index / dmc->assoc);
1512          }
1513     } else {
1514          pjob = flashcache_alloc_pending_job(dmc);
1515          if (unlikely(sysctl_flashcache_error_inject & WRITE_HIT_PENDING_JOB_ALLOC_FAIL)) {
1516               if (pjob) {
1517                    flashcache_free_pending_job(pjob);
1518                    pjob = NULL;
1519               }
1520               sysctl_flashcache_error_inject &= ~WRITE_HIT_PENDING_JOB_ALLOC_FAIL;
1521          }
1522          if (unlikely(pjob == NULL))
1523               flashcache_bio_endio(bio, -EIO);
1524          else
1525               flashcache_enq_pending(dmc, bio, index, WRITECACHE, pjob);
1526          spin_unlock_irq(&dmc->cache_spin_lock);
1527     }
1528}

在1475行获得cache块,在1476行判断是否空闲,在有IO处理或者有pending_job挂着的时候都视为忙。如果cache块空闲,则进入if分支,接下来又是套路了,创建kcached_job,成功的话就在1507行下发写请求。然后接着看写返回时做了哪些处理?进入写回调函数之前,要记住这里设置了两个标志,一个是1480行cache块的CACHEWRITEINPROG,另一个是1503行kcached_job的WRITECACHE,带着这两个标志进入到写回调函数flashcache_io_callback,并直接找到需要的地方:
[cpp] view plain copy print ?
  1. 188 case WRITECACHE:
  2. 189 DPRINTK("flashcache_io_callback: WRITECACHE %d",
  3. 190 index);
  4. 191 spin_lock_irqsave(&dmc->cache_spin_lock, flags);
  5. 192 if (unlikely(sysctl_flashcache_error_inject & WRITECACHE_ERROR)) {
  6. 193 job->error = error = -EIO;
  7. 194 sysctl_flashcache_error_inject &= ~WRITECACHE_ERROR;
  8. 195 }
  9. 196 VERIFY(cacheblk->cache_state & CACHEWRITEINPROG);
  10. 197 if (likely(error == 0)) {
  11. 198#ifdef FLASHCACHE_DO_CHECKSUMS
  12. 199 dmc->checksum_store++;
  13. 200 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
  14. 201 flashcache_store_checksum(job);
  15. 202 /*
  16. 203 * We need to update the metadata on a DIRTY->DIRTY as well
  17. 204 * since we save the checksums.
  18. 205 */
  19. 206 push_md_io(job);
  20. 207 schedule_work(&_kcached_wq);
  21. 208 return;
  22. 209#else
  23. 210 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
  24. 211 /* Only do cache metadata update on a non-DIRTY->DIRTY transition */
  25. 212 if ((cacheblk->cache_state & DIRTY) == 0) {
  26. 213 push_md_io(job);
  27. 214 schedule_work(&_kcached_wq);
  28. 215 return;
  29. 216 }
  30. 217#endif
  31. 218 } else {
  32. 219 dmc->ssd_write_errors++;
  33. 220 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
  34. 221 }
  35. 222 flashcache_bio_endio(bio, error);
  36. 223 break;
188     case WRITECACHE:
189          DPRINTK("flashcache_io_callback: WRITECACHE %d",
190               index);
191          spin_lock_irqsave(&dmc->cache_spin_lock, flags);
192          if (unlikely(sysctl_flashcache_error_inject & WRITECACHE_ERROR)) {
193               job->error = error = -EIO;
194               sysctl_flashcache_error_inject &= ~WRITECACHE_ERROR;
195          }
196          VERIFY(cacheblk->cache_state & CACHEWRITEINPROG);
197          if (likely(error == 0)) {
198#ifdef FLASHCACHE_DO_CHECKSUMS
199               dmc->checksum_store++;
200               spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
201               flashcache_store_checksum(job);
202               /* 
203               * We need to update the metadata on a DIRTY->DIRTY as well 
204               * since we save the checksums.
205               */
206               push_md_io(job);
207               schedule_work(&_kcached_wq);
208               return;
209#else
210               spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
211               /* Only do cache metadata update on a non-DIRTY->DIRTY transition */
212               if ((cacheblk->cache_state & DIRTY) == 0) {
213                    push_md_io(job);
214                    schedule_work(&_kcached_wq);
215                    return;
216               }
217#endif
218          } else {
219               dmc->ssd_write_errors++;               
220               spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
221          }
222          flashcache_bio_endio(bio, error);
223          break;

写到缓存成功的话,暂不管cache块的校验值,会来到210行,判断原来的cache块是否为脏,如果为脏那就什么事情都不用做了。因为如果cache块本来就是脏,那新来的IO可以直接覆盖到cache块上去。反之如果原来cache块是干净的,那么这个时候要把cache块已经变脏记录到SSD上,于是进入了第213行开始写cache块管理信息。到了这里似乎cache块已经写到缓存中,IO可以返回了,但是到了第215行为什么直接return呢?这里涉及到数据一致性的问题。其实cache块管理结构没有写到缓存中,这个写请求不能算完成。试想如果在这里调用了第222行flashcache_bio_endio把IO返回了,会有什么样的后果?其实大多数情况下是没有什么问题的,但如果在这个时候系统掉电或者宕机了,这时候缓存中记录的cache块状态是干净的,但又已经跟上层返回说IO已经写成功了,那么最后这一次写的数据就丢失了。当然对于大部分用户来说,这一点数据算什么?但对于像银行这样的系统,当你把辛苦了十年的积蓄存到自动取款机,这时自动取款机告诉你存成功了,但不幸的是后台刚好发生了我们上面描述的问题。结果你再查的时候没有你刚才存进去的钱,但你的钱确确实实被取款机收进去了,这时你会有怎样的感受?这里只是举个数据一致性在某些应用中是非常重要的,当然现实中绝大数银行是不会有这样的问题,银行可以有日志查出来,系统也有热备,也是带UPS保护的。
如果原来的cache块为脏的情况就以第222行flashcache_bio_endio结束了。
如果不为脏,那么调用213行将cache块管理结构写到缓存。
[cpp] view plain copy print ?
  1. 272void
  2. 273push_md_io(struct kcached_job *job)
  3. 274{
  4. 275 push(&_md_io_jobs, job);
  5. 276}
272void
273push_md_io(struct kcached_job *job)
274{
275     push(&_md_io_jobs, job);     
276}

这里只是简单放到队列中,具体处理的是第214行唤醒的工作队列。该工作队列对应的处理函数是:
[cpp] view plain copy print ?
  1. 303 process_jobs(&_md_io_jobs, flashcache_md_write);
303     process_jobs(&_md_io_jobs, flashcache_md_write);

这个函数怎么这么面熟呢?因为在第一小节里已经介绍过了:
http://blog.csdn.net/liumangxiong/article/details/11681787
这里小结一下写命中并且原cache块为干净的数据流程:
1)写命中调用dm_io_async_bvec写缓存
2)写缓存完成回调函数flashcache_io_callback,判断原cache块为干净,需要写cache块管理结构
3)由工作队列_kcached_wq调用flashcache_md_write写cache块管理结构,最终由flashcache_md_write_kickoff调用dm_io_async_bvec将cache块管理结构写到缓存
4)写缓存完成之后调用flashcache_md_write_callback
5)由工作队列_kcached_wq调用flashcache_md_write_done处理
6)在flashcache_md_write_done中判断job类型为WRITECACHE,最后调用flashcache_bio_endio返回
至此,这个IO才完成使命。
接下来讲第3种情况,这种情况就非常简单了。
[cpp] view plain copy print ?
  1. 1411static void
  2. 1412flashcache_write_miss(struct cache_c *dmc, struct bio *bio, int index)
  3. 1413{
  4. 1414 struct cacheblock *cacheblk;
  5. 1415 struct kcached_job *job;
  6. 1416 int queued;
  7. 1417
  8. 1418 cacheblk = &dmc->cache[index];
  9. 1419 queued = flashcache_inval_blocks(dmc, bio);
  10. 1420 if (queued) {
  11. 1421 if (unlikely(queued < 0))
  12. 1422 flashcache_bio_endio(bio, -EIO);
  13. 1423 spin_unlock_irq(&dmc->cache_spin_lock);
  14. 1424 return;
  15. 1425 }
  16. 1426 if (cacheblk->cache_state & VALID)
  17. 1427 dmc->wr_replace++;
  18. 1428 else
  19. 1429 dmc->cached_blocks++;
  20. 1430 cacheblk->cache_state = VALID | CACHEWRITEINPROG;
  21. 1431 cacheblk->dbn = bio->bi_sector;
  22. 1432 spin_unlock_irq(&dmc->cache_spin_lock);
  23. 1433 job = new_kcached_job(dmc, bio, index);
  24. 1434 if (unlikely(sysctl_flashcache_error_inject & WRITE_MISS_JOB_ALLOC_FAIL)) {
  25. 1435 if (job)
  26. 1436 flashcache_free_cache_job(job);
  27. 1437 job = NULL;
  28. 1438 sysctl_flashcache_error_inject &= ~WRITE_MISS_JOB_ALLOC_FAIL;
  29. 1439 }
  30. 1440 if (unlikely(job == NULL)) {
  31. 1441 /*
  32. 1442 * We have a write miss, and can't allocate a job.
  33. 1443 * Since we dropped the spinlock, we have to drain any
  34. 1444 * pending jobs.
  35. 1445 */
  36. 1446 DMERR("flashcache: Write (miss) failed ! Can't allocate memory for cache IO, block %lu",
  37. 1447 cacheblk->dbn);
  38. 1448 flashcache_bio_endio(bio, -EIO);
  39. 1449 spin_lock_irq(&dmc->cache_spin_lock);
  40. 1450 dmc->cached_blocks--;
  41. 1451 cacheblk->cache_state &= ~VALID;
  42. 1452 cacheblk->cache_state |= INVALID;
  43. 1453 flashcache_free_pending_jobs(dmc, cacheblk, -EIO);
  44. 1454 cacheblk->cache_state &= ~(BLOCK_IO_INPROG);
  45. 1455 spin_unlock_irq(&dmc->cache_spin_lock);
  46. 1456 } else {
  47. 1457 job->action = WRITECACHE;
  48. 1458 atomic_inc(&dmc->nr_jobs);
  49. 1459 dmc->ssd_writes++;
  50. 1460 dm_io_async_bvec(1, &job->cache, WRITE,
  51. 1461 bio->bi_io_vec + bio->bi_idx,
  52. 1462 flashcache_io_callback, job);
  53. 1463 flashcache_unplug_device(dmc->cache_dev->bdev);
  54. 1464 flashcache_clean_set(dmc, index / dmc->assoc);
  55. 1465 }
  56. 1466}
1411static void
1412flashcache_write_miss(struct cache_c *dmc, struct bio *bio, int index)
1413{
1414     struct cacheblock *cacheblk;
1415     struct kcached_job *job;
1416     int queued;
1417
1418     cacheblk = &dmc->cache[index];
1419     queued = flashcache_inval_blocks(dmc, bio);
1420     if (queued) {
1421          if (unlikely(queued < 0))
1422               flashcache_bio_endio(bio, -EIO);
1423          spin_unlock_irq(&dmc->cache_spin_lock);
1424          return;
1425     }
1426     if (cacheblk->cache_state & VALID)
1427          dmc->wr_replace++;
1428     else
1429          dmc->cached_blocks++;
1430     cacheblk->cache_state = VALID | CACHEWRITEINPROG;
1431     cacheblk->dbn = bio->bi_sector;
1432     spin_unlock_irq(&dmc->cache_spin_lock);
1433     job = new_kcached_job(dmc, bio, index);
1434     if (unlikely(sysctl_flashcache_error_inject & WRITE_MISS_JOB_ALLOC_FAIL)) {
1435          if (job)
1436               flashcache_free_cache_job(job);
1437          job = NULL;
1438          sysctl_flashcache_error_inject &= ~WRITE_MISS_JOB_ALLOC_FAIL;
1439     }
1440     if (unlikely(job == NULL)) {
1441          /* 
1442          * We have a write miss, and can't allocate a job.
1443          * Since we dropped the spinlock, we have to drain any 
1444          * pending jobs.
1445          */
1446          DMERR("flashcache: Write (miss) failed ! Can't allocate memory for cache IO, block %lu", 
1447                cacheblk->dbn);
1448          flashcache_bio_endio(bio, -EIO);
1449          spin_lock_irq(&dmc->cache_spin_lock);
1450          dmc->cached_blocks--;
1451          cacheblk->cache_state &= ~VALID;
1452          cacheblk->cache_state |= INVALID;
1453          flashcache_free_pending_jobs(dmc, cacheblk, -EIO);
1454          cacheblk->cache_state &= ~(BLOCK_IO_INPROG);
1455          spin_unlock_irq(&dmc->cache_spin_lock);
1456     } else {
1457          job->action = WRITECACHE; 
1458          atomic_inc(&dmc->nr_jobs);
1459          dmc->ssd_writes++;
1460          dm_io_async_bvec(1, &job->cache, WRITE, 
1461                    bio->bi_io_vec + bio->bi_idx,
1462                    flashcache_io_callback, job);
1463          flashcache_unplug_device(dmc->cache_dev->bdev);
1464          flashcache_clean_set(dmc, index / dmc->assoc);
1465     }
1466}

大多数函数都已经是老朋友了。第1430行cache块设置了VALID标志,表示在有效数据,第1431行设置cache块对应的磁盘的bi_sector扇区。接着到第1460行下发写缓存请求,写缓存的情况与写命中的一样就不再继续跟进了。
下一节讲缓存超水位线写回磁盘。

你可能感兴趣的:(linux内核源码阅读之facebook硬盘加速flashcache之六)