UVA 12563 Jin Ge Jin Qu hao(01背包变形:两个条件最优化)

UVA 12563 Jin Ge Jin Qu hao(01背包变形:两个条件最优化)

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4008

题意:

       KTV里面有n首歌曲你可以选择,每首歌曲的时长都给出了. 对于每首歌曲,你最多只能唱1遍. 现在给你一个时间限制t (t<=10^9) , 问你在最多t-1秒的时间内可以唱多少首歌曲num , 且最长唱歌时间是多少time (time必须<=t-1) ? 最终输出num+1 和 time+678 即可.

       注意: 你需要优先让歌曲数目最大的情况下,再去选择总时长最长的.

分析:

       其实本题本质上就是一个标准的01背包问题. 问你<=t-1时间内最多可以选择哪些歌曲使得 (数据1,数据2) 最优. 这里的数据1是歌曲数目, 数据2是歌曲总时长, 且数据1优先.

       一般我们做的01背包问题都是问你<=t-1的时间内, 最多选择哪些歌曲使得歌曲数目最多 总时间最长. 但是本题需要同时考虑两个最优条件, 那么该怎么做呢?

       我们令dp[i][j]==x 表示当决策完全前i个物品后(选或不选), 所选的总歌曲时长<=j时, 所得到的最优状态为x. (这里的x就不是平时我们所说的最长时间或最多歌曲数目了)

       怎么理解最优状态为x这个事实呢? 假设有两种选择前i个歌曲的方法能使得决策完前i个物品且总时长<=j时的状态分别为x1 和x2.

       那么如果x1状态的歌曲数目> x2状态的歌曲数目, 那么明显x1状态更优. 所以dp[i][j]应==x1.

       如果x1状态的歌曲数目与x2的相等, 但是x2状态的时长 > x1状态时长, 那么此时x2状态更优. 所以dp[i][j]应==x2.

       经过上面的分析,我们可以用一个(具有歌曲数和总时长双属性的)结构体来表示一个状态. 且可以得到下面状态转移公式:

       dp[i][j] = 最优( dp[i-1][j] ,  在dp[i-1][j-t[i]]的基础上选择第i首歌后得到的新状态tmp )

       所有dp初始化为0即可. 最终我们所求为dp[n][max_time]

 

       最后还有一个问题就是t<=10^9.我们不可能循环判断j到10^9. 其实一共50首歌曲, 每首歌曲最多180秒, 所以我们求出所有歌曲的时长和sum(sum<=50*180==9000).

       如果t-1>=sum, 那么明显所有歌曲都能被选一遍.

       如果t-1<sum,那么明显我们需要遍历到dp[i][t-1]为止.

       程序实现用的滚动数组,所以dp只有[j]这一维.

AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=180*50+5;

int n,max_t;
int t[50+5]; //每首歌曲的时间
struct Node
{
    int num; //总歌曲数
    int time;//歌总时间
    bool operator<(const Node &rhs)const//判断是否更优
    {
        return num<rhs.num || (num==rhs.num && time<rhs.time);
    }
}dp[maxn];

int main()
{
    int T;
    scanf("%d",&T);
    for(int kase=1;kase<=T;kase++)
    {
        printf("Case %d: ",kase);

        scanf("%d%d",&n,&max_t);
        memset(dp,0,sizeof(dp));

        int sum=0;//所有歌曲总时长
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&t[i]);
            sum +=t[i];
        }
        //max_t是我们最大需要考虑的时间
        max_t = min(sum,max_t-1);
        //注意max_t==sum和max_t==0时的情况.

        int ans=0;
        for(int i=1;i<=n;i++)
        {
            for(int j=max_t;j>=t[i];j--)
            {
                Node tmp;//tmp表示当选择第i首歌时的情况
                tmp.num  = dp[j-t[i]].num+1;
                tmp.time = dp[j-t[i]].time+t[i];
                if(dp[j]<tmp)//tmp更优
                {
                    dp[j]=tmp;
                }
            }
        }
        printf("%d %d\n",dp[max_t].num+1,dp[max_t].time+678);
    }
    return 0;
}

你可能感兴趣的:(Algorithm,算法,dp,ACM)