Dijkstra\'s Algorithm

    算法解决的是有向图中单个源点到其他顶点的最短路径问题。举例来说,如果图中的顶点表示城市,而边上的权重表示著城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。

按路径长度递增次序产生算法:

把顶点集合V分成两组:
(1)S:已求出的顶点的集合(初始时只含有源点V0)
(2)V-S=T:尚未确定的顶点集合
将T中顶点按递增的次序加入到S中,保证:
(1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度
(2)每个顶点对应一个距离值
S中顶点:从V0到此顶点的长度
T中顶点:从V0到此顶点的只包括S中顶点作中间顶点的最短路径长度
依据:可以证明V0到T中顶点Vk的,或是从V0到Vk的直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和。
求最短路径步骤
算法步骤如下:
1. 初始时令 S={V0},T={其余顶点},T中顶点对应的距离值
若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值
若不存在<V0,Vi>,d(V0,Vi)为∞
2. 从T中选取一个其距离值为最小的顶点W且不在S中,加入S
3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值
重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止
例子:
如下图,设A为源点,求A到其他各顶点(B、C、D、E、F)的最短路径。线上所标注为相邻线段之间的距离,即权值。(注:此图为随意所画,其相邻顶点间的距离与图中的目视长度不能一一对等)

图一:Dijkstra无向图

 Dijkstra\'s Algorithm_第1张图片

算法执行步骤如下表:【注:图片要是看不到请到“相册--日志相册”中,名为“Dijkstra算法过程”的图就是了】

Dijkstra\'s Algorithm_第2张图片

你可能感兴趣的:(Dijkstra\'s Algorithm)