前几个必败点如下:(0,0),(1,2),(3,5),(4,7),(6,10),(8,13)……可以发现,对于第k个必败点(m(k),n(k))来说,m(k)是前面没有出现过的最小自然数,n(k)=m(k)+k。一个必败点有如下性质:
1.所有自然数都会且仅会出现在一个必败点中;
证明:m(k)是前面没有出现过的最小自然数,自然与前k-1个必败点中的数字都不同;m(k)>m(k-1),否则违背m(k-1)的选择原则;n(k)=m(k)+k>m(k-1)+(k-1)=n(k-1)>m(k-1),因此n(k)比以往出现的任何数都大,即也没有出现过。又由于m(k)的选择原则,所有自然数都会出现在某个必败点中。性质1证毕。
2.规则允许的任意操作可将必败点移动到必胜点;
证明:以必败点(m(k),n(k))为例。若只改变两个数中的一个,由于性质1,则得到的点一定是必胜点;若同时增加两个数,由于不能改变两数之差,又有n(k)-m(k)=k,故得到的点也一定是必胜点。性质2证毕。
3.一定存在规则允许的某种操作可将必胜点移动到必败点;
证明:以某个必胜点(i,j)为例。因为所有自然数都会出现在某个必败点中,故要么i等于m(k),要么j等于n(k)。若i=m(k),j>n(k),可从j中取走j-n(k)个石子到达必败点;若i=m(k),j<n(k),可从两堆同时拿走m(k)-m(j-m(k)),从而到达必败点(m(j-m(k)),m(j-m(k))+j-m(k));若i>m(k),j=n(k),可从i中取走i-m(k)个石子到达必败点;若i<m(k),j=n(k),需要再分两种情况,因为i一定也出现在某个必败点中,若i=m(l),则从j中拿走j-n(l),若i=n(l),则从j中拿走j-m(l),从而到达必败点(m(l),n(l))。性质3证毕。
判断一个点是不是必败点的公式与黄金分割有关,为:
m(k) = k * (1 + sqrt(5))/2
n(k) = m(k) + k