这篇完整主要的好处就是介绍了各种sensor的计算公式 ,这些计算在Androidl里面是SensorManager.java中进行的。
可以更好的帮助你理解SensorManager.java中的计算。不过,为啥底层不计算好再传上来呢? 难道让每个native的app自己再计算吗?这个是我现在要解决的事情。
=====================================================原文如下===============================================================
1、Android中支持的Snesor种类
Sensor |
说明 |
Sensor.TYPE_ACCELEROMETER |
加速度感应检测 |
Sensor.TYPE_MAGNETIC_FIELD |
磁场感应检测 |
Sensor.TYPE_ORIENTATION |
方位感应检测 |
Sensor.TYPE_GYROSCOPE |
回转仪感应检测 |
Sensor.TYPE_LIGHT |
亮度感应检测 |
Sensor.TYPE_PRESSURE |
压力感应检测 |
Sensor.TYPE_TEMPERATURE |
温度感应检测 |
Sensor.TYPE_PROXIMITY |
接近感应检测 |
感应检测功能:
1、取得SensorManager
使用感应检测Sensor首要先获取感应设备的检测信号,你可以调用Context.getSysteService(SENSER_SERVICE)方法来取得感应检测的服务
2、实现取得感应检测Sensor状态的监听功能
实现以下两个SensorEventListener方法来监听,并取得感应检测Sensor状态:
实现下列getSensorList()方法来取得感应检测Sensor的值;
第一个参数:监听Sensor事件,第二个参数是Sensor目标种类的值,第三个参数是延迟时间的精度密度。延迟时间的精密度参数如下:
参数 |
延迟时间 |
SensorManager.SENSOR_DELAY_FASTEST |
0ms |
SensorManager.SENSOR_DELAY_GAME |
20ms |
SensorManager.SENSOR_DELAY_UI |
60ms |
SensorManager.SENSOR_DELAY_NORMAL |
200ms |
因为感应检测Sensor的服务是否频繁和快慢都与电池参量的消耗有关,同时也会影响处理的效率,所以兼顾到消耗电池和处理效率的平衡,设置感应检测Sensor的延迟时间是一门重要的学问,需要根据应用系统的需求来做适当的设置。
感应检测Sensor的硬件检测组件收不同的厂商提供。你可以采用Sensor的getVendor(),Sensor()的getName()和Sensor的getVeesrion()方法来取得 厂商的名称、产品和产品版本。
5、取消注册
加速度感应检测——Accelerometer
Accelerometer Sensor测量的是所有施加在设备上的力所产生的加速度的负值(包括重力加速度)。加速度所使用的单位是m/sec^2,数值是加速度的负值。
SensorEvent.values[0]:加速度在X轴的负值
SensorEvent.values[1]:加速度在Y轴的负值
SensorEvent.values[2]:加速度在Z轴的负值
例如:
当手机Z轴朝上平放在桌面上,并且从左到右推动手机,此时X轴上的加速度是正数。
当手机Z轴朝上静止放在桌面上,此时Z轴的加速度是+9.81m/sec^2。
当手机从空中自由落体,此时加速度是0
当手机向上以Am/sec^2的加速度向空中抛出,此时加速度是A+9.81m/sec^2
重力加速度感应检测——Gravity重力加速度,其单位是m/sec^2,其坐标系与Accelerometer使用的一致。当手机静止时,gravity的值和Accelerometer的值是一致的。
线性加速度感应检测——Linear-Acceleration
Accelerometer、Gravity和Linear-Acceleration三者的关系如下公式:
accelerometer = gravity + linear-acceleration
地磁场感应检测——Magnetic-field
地磁场的单位是micro-Tesla(uT),检测的是X、Y、Z轴上的绝对地磁场。
陀螺仪感应检测——Gyroscope
陀螺仪的单位是弧度/秒,测量的是物体分别围绕X,Y,Z轴旋转的角速度。它的坐标系与加速度传感器的坐标系相同。逆时针方向旋转的角度正的。也就是说,如果设备逆时针旋转,观察者向X,Y,Z轴的正方向看去,就报告设备是正转的。请注意,这是标准的正旋转的数学定义。
光线感应检测——Light
values[0]:表示环境光照的水平,单位是SI lux。
位置逼近感应检测——Proximity
values[0]:逼近的距离,单位是厘米(cm)。有一些传感器只能支持近和远两种状态,这种情况下,传感器必须报告它在远状态下的maximum_range值和在近状态下的小值。
旋转矢量感应检测——Rotation Vector
旋转向量是用来表示设备的方向,它是由角度和轴组成,就是设备围绕x,y,z轴之一旋转θ角度。旋转向量的三个要素是,这样旋转向量的大小等于sin(θ/2),旋转向量的方向等于旋转轴的方向。
values[0]: x*sin(θ/2)
values[1]: y*sin(θ/2)
values[2]: z*sin(θ/2)
values[3]: cos(θ/2) (optional: only if value.length = 4)
方向感应检测——Orientation
其单位是角度
values[0]: Azimuth(方位),地磁北方向与y轴的角度,围绕z轴旋转(0到359)。0=North, 90=East, 180=South, 270=West
values[1]: Pitch(俯仰),围绕X轴旋转(-180 to 180), 当Z轴向Y轴运动时是正值
values[2]: Roll(滚),围绕Y轴旋转(-90 to 90),当X轴向Z轴运动时是正值
注意:这里的定义与航空中定义的yaw、pitch和roll不同,航空中的X轴是沿着飞机的最长边(从头到尾)。
注意:这个传感器类型存在遗留问题,请使用与getRotationMatrix()和remapCoordinateSystem()以及getOrientation()配合使用,来计算值代替得到的值。
重要说明:由于历史的原因,以顺时针旋转的滚动角是正的(从数学上讲,它应该是逆时针方向)。
来源:http://www.linuxidc.com/Linux/2011-09/42264.htm