HDU 3488 Tour(最小费用流:有向环覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=3488
题意:
给你一个N个顶点M条边的带权有向图,要你把该图分成1个或多个不相交的有向环.且所有定点都只被一个有向环覆盖.问你该有向环所有权值的总和最小是多少?(保证有解)
分析:
之前本题我的是二分图最优匹配做的,现在用费用流来做.
建图如下:
源点s编号0, 图中原始节点拆点成i和i+n(编号1到n和编号n+1到2*n) , 汇点t编号2*n+1.
如果原图i节点到j节点有权值w的边,那么新图有边 (i, j+n, 1, w)
且源点s到任意节点i有边 (s, i, 1, 0)
且任意节点i到汇点t有边 (i+n,t,1,0)
如果最大流==n,那么最小费用即是解.
关于上面解法的论证,请见HDU1853:
http://blog.csdn.net/u013480600/article/details/39159407
AC代码:
#include<cstdio> #include<cstring> #include<algorithm> #include<queue> #include<vector> #define INF 1e9 using namespace std; const int maxn=400+5; struct Edge { int from,to,cap,flow,cost; Edge(){} Edge(int f,int t,int c,int fl,int co):from(f),to(t),cap(c),flow(fl),cost(co){} }; struct MCMF { int n,m,s,t; vector<Edge> edges; vector<int> G[maxn]; bool inq[maxn]; int d[maxn]; int p[maxn]; int a[maxn]; void init(int n,int s,int t) { this->n=n, this->s=s, this->t=t; edges.clear(); for(int i=0;i<n;++i) G[i].clear(); } void AddEdge(int from,int to,int cap,int cost) { edges.push_back(Edge(from,to,cap,0,cost)); edges.push_back(Edge(to,from,0,0,-cost)); m=edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BellmanFord(int &flow,int &cost) { queue<int> Q; for(int i=0;i<n;++i) d[i]=INF; memset(inq,0,sizeof(inq)); Q.push(s),inq[s]=true,d[s]=0,a[s]=INF,p[s]=0; while(!Q.empty()) { int u=Q.front(); Q.pop(); inq[u]=false; for(int i=0;i<G[u].size();++i) { Edge &e=edges[G[u][i]]; if(e.cap>e.flow && d[e.to]>d[u]+e.cost) { d[e.to]=d[u]+e.cost; a[e.to]=min(a[u],e.cap-e.flow); p[e.to]=G[u][i]; if(!inq[e.to]){inq[e.to]=true; Q.push(e.to);} } } } if(d[t]==INF) return false; flow += a[t]; cost += a[t]*d[t]; int u=t; while(u!=s) { edges[p[u]].flow +=a[t]; edges[p[u]^1].flow -=a[t]; u=edges[p[u]].from; } return true; } int solve(int num) { int flow=0,cost=0; while(BellmanFord(flow,cost)); return flow==num?cost:-1; } }MM; int main() { int T;scanf("%d",&T); while(T--) { int n,m; scanf("%d%d",&n,&m); int src=0,dst=2*n+1; MM.init(2*n+2,src,dst); for(int i=1;i<=n;++i) { MM.AddEdge(src,i,1,0); MM.AddEdge(i+n,dst,1,0); } while(m--) { int u,v,w; scanf("%d%d%d",&u,&v,&w); MM.AddEdge(u,v+n,1,w); } printf("%d\n",MM.solve(n)); } return 0; }