当 operator new 不能满足一个内存分配请求时,它抛出一个 exception(异常)。很久以前,他返回一个 null pointer(空指针),而一些比较老的编译器还在这样做。你依然能达到以前的目的(在一定程度上),但是我要到本文的最后再讨论它。
在 operator new 因回应一个无法满足的内存请求而抛出一个 exception 之前,它先调用一个可以由客户指定的被称为 new-handler 的 error-handling function(错误处理函数)。(这并不完全确切,operator new 真正做的事情比这个稍微复杂一些,详细细节将在下一篇文章中讨论。)为了指定 out-of-memory-handling function,客户调用 set_new_handler ——一个在 <new> 中声明的标准库函数:
namespace std { typedef void (*new_handler)(); new_handler set_new_handler(new_handler p) throw(); } |
就像你能够看到的,new_handler 是一个指针的 typedef,这个指针指向不取得和返回任何东西的函数,而 set_new_handler 是一个取得和返回一个 new_handler 的函数。(set_new_handler 的声明的结尾处的 "throw()" 是一个 exception specification(异常规范)。它基本上是说这个函数不会抛出任何异常,尽管真相更有趣一些。关于细节,参见《C++箴言:争取异常安全的代码》。)
set_new_handler 的形参是一个指向函数的指针,这个函数是 operator new 无法分配被请求的内存时应该调用的。set_new_handler 的返回值是一个指向函数的指针,这个函数是 set_new_handler 被调用前有效的目标。
你可以像这样使用 set_new_handler:
// function to call if operator new can't allocate enough memory void outOfMem() { std::cerr << "Unable to satisfy request for memory/n"; std::abort(); } int main() { std::set_new_handler(outOfMem); int *PBigDataArray = new int[100000000L]; ... } |
如果 operator new 不能为 100,000,000 个整数分配空间,outOfMem 将被调用,而程序将在发出一个错误信息后中止。(顺便说一句,考虑如果在写这个错误信息到 cerr... 的过程中内存必须被动态分配会发生什么。)
当 operator new 不能满足一个内存请求时,它反复调用 new-handler function 直到它能找到足够的内存。但是从这种高层次的描述已足够推导出一个设计得好的 new-handler function 必须做到以下事情之一:
·Make more memory available(使得更多的内存可用)。这可能使得 operator new 中下一次内存分配的尝试成功。实现这一策略的一个方法是在程序启动时分配一大块内存,然后在 new-handler 第一次被调用时释放它供程序使用。
·Install a different new-handler(安装一个不同的 new-handler)。如果当前的 new-handler 不能做到使更多的内存可用,或许它知道有一个不同的 new-handler 可以做到。如果是这样,当前的 new-handler 能在它自己的位置上安装另一个 new-handler(通过调用 set_new_handler)。operator new 下一次调用 new-handler function 时,它会得到最近安装的那一个。(这个主线上的一个变化是让一个 new-handler 改变它自己的行为,这样,下一次它被调用时,可以做一些不同的事情。做到这一点的一个方法是让 new-handler 改变能影响 new-handler 行为的 static(静态),namespace-specific(名字空间专用)或 global(全局)的数据。)
·Deinstall the new-handler(卸载 new-handler),也就是,将空指针传给 set_new_handler。没有 new-handler 被安装,当内存分配没有成功时,operator new 抛出一个异常。
·Throw an exception(抛出一个异常),类型为 bad_alloc 或继承自 bad_alloc 的其它类型。这样的异常不会被 operator new 捕获,所以它们将被传播到发出内存请求的地方。
·Not return(不再返回),典型情况下,调用 abort 或 exit。
这些选择使你在实现 new-handler functions 时拥有极大的弹性。
有时你可能希望根据被分配 object 的不同,用不同的方法处理内存分配的失败:
class X { public: static void outOfMemory(); ... }; class Y { public: static void outOfMemory(); ... }; X* p1 = new X; // if allocation is unsuccessful, // call X::outOfMemory Y* p2 = new Y; // if allocation is unsuccessful, // call Y::outOfMemory |
C++ 没有对 class-specific new-handlers 的支持,但是它也不需要。你可以自己实现这一行为。你只要让每一个 class 提供 set_new_handler 和 operator new 的它自己的版本即可。class 的 set_new_handler 允许客户为这个 class 指定 new-handler(正像standard set_new_handler 允许客户指定global new-handler)。class 的 operator new 确保当为 class objects 分配内存时,class-specific new-handler 代替 global new-handler 被使用。
假设你要为 Widget class 处理内存分配失败。你就必须清楚当 operator new 不能为一个 Widget object 分配足够的内存时所调用的函数,所以你需要声明一个 new_handler 类型的 static member(静态成员)指向这个 class 的 new-handler function。Widget 看起来就像这样:
class Widget { public: static std::new_handler set_new_handler(std::new_handler p) throw(); static void * operator new(std::size_t size) throw(std::bad_alloc); private: static std::new_handler currentHandler; }; |
static class members(静态类成员)必须在 class 定义外被定义(除非它们是 const 而且是 integral),所以:
std::new_handler Widget::currentHandler = 0; // init to null in the class // impl. file |
Widget 中的 set_new_handler 函数会保存传递给它的任何指针,而且会返回前次调用时被保存的任何指针,这也正是 set_new_handler 的标准版本所做的事情:
std::new_handler Widget::set_new_handler(std::new_handler p) throw() { std::new_handler oldHandler = currentHandler; currentHandler = p; return oldHandler; } |
最终,Widget 的 operator new 将做下面这些事情:
以 Widget 的 error-handling function 为参数调用 standard set_new_handler。这样将 Widget 的new-handler 安装为 global new-handler。
调用 global operator new 进行真正的内存分配。如果分配失败,global operator new 调用 Widget 的 new-handler,因为那个函数刚才被安装为 global new-handler。如果 global operator new 最后还是无法分配内存,它会抛出一个 bad_alloc exception。在此情况下,Widget 的 operator new 必须恢复原来的 global new-handler,然后传播那个 exception。为了确保原来的 new-handler 总能被恢复,Widget 将 global new-handler 作为一种资源对待,并遵循《C++箴言:使用对象管理资源》中的建议,使用 resource-managing objects(资源管理对象)来预防 resource leaks(资源泄漏)。
如果 global operator new 能够为一个 Widget object 分配足够的内存,Widget 的 operator new 返回一个指向被分配内存的指针。object 的用于管理 global new-handler 的 destructor(析构函数)自动将 global new-handler 恢复到调用 Widget 的 operator new 之前的状态。
以下就是你如何在 C++ 中表达这所有的事情。我们以 resource-handling class 开始,组成部分中除了基本的 RAII 操作(在构造过程中获得资源并在析构过程中释放)(《C++箴言:使用对象管理资源》),没有更多的东西:
class NewHandlerHolder { public: explicit NewHandlerHolder(std::new_handler nh) // acquire current :handler(nh) {} // new-handler ~NewHandlerHolder() // release it { std::set_new_handler(handler); } private: std::new_handler handler; // remember it NewHandlerHolder(const NewHandlerHolder&); // prevent copying NewHandlerHolder& // (see 《C++箴言:谨慎考虑资源管理类的拷贝行为》) operator=(const NewHandlerHolder&); }; |
void * Widget::operator new(std::size_t size) throw(std::bad_alloc) { NewHandlerHolder // install Widget's h(std::set_new_handler(currentHandler)); // new-handler return ::operator new(size); // allocate memory // or throw } // restore global // new-handler |
void outOfMem(); // decl. of func. to call if mem. alloc. // for Widget objects fails Widget::set_new_handler(outOfMem); // set outOfMem as Widget's // new-handling function Widget *pw1 = new Widget; // if memory allocation // fails, call outOfMem std::string *ps = new std::string; // if memory allocation fails, // call the global new-handling // function (if there is one) Widget::set_new_handler(0); // set the Widget-specific // new-handling function to // nothing (i.e., null) Widget *pw2 = new Widget; // if mem. alloc. fails, throw an // exception immediately. (There is // no new- handling function for // class Widget.) |
template<typename T> // "mixin-style" base class for class NewHandlerSupport{ // class-specific set_new_handler public: // support static std::new_handler set_new_handler(std::new_handler p) throw(); static void * operator new(std::size_t size) throw(std::bad_alloc); ... // other versions of op. new private: static std::new_handler currentHandler; }; template<typename T> std::new_handler NewHandlerSupport<T>::set_new_handler(std::new_handler p) throw() { std::new_handler oldHandler = currentHandler; currentHandler = p; return oldHandler; } template<typename T> void* NewHandlerSupport<T>::operator new(std::size_t size) throw(std::bad_alloc) { NewHandlerHolder h(std::set_new_handler(currentHandler)); return ::operator new(size); } // this initializes each currentHandler to null template<typename T> std::new_handler NewHandlerSupport<T>::currentHandler = 0; |
class Widget: public NewHandlerSupport<Widget> { ... // as before, but without declarations for }; // set_new_handler or operator new |
class Widget { ... }; Widget *pw1 = new Widget; // throws bad_alloc if // allocation fails if (pw1 == 0) ... // this test must fail Widget *pw2 =new (std::nothrow) Widget; // returns 0 if allocation for // the Widget fails if (pw2 == 0) ... // this test may succeed |