hdu 4819 Mosaic(二维线段树)

Mosaic

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 647    Accepted Submission(s): 245


Problem Description
The God of sheep decides to pixelate some pictures (i.e., change them into pictures with mosaic). Here's how he is gonna make it: for each picture, he divides the picture into n x n cells, where each cell is assigned a color value. Then he chooses a cell, and checks the color values in the L x L region whose center is at this specific cell. Assuming the maximum and minimum color values in the region is A and B respectively, he will replace the color value in the chosen cell with floor((A + B) / 2).

Can you help the God of sheep?
 

Input
The first line contains an integer T (T ≤ 5) indicating the number of test cases. Then T test cases follow.

Each test case begins with an integer n (5 < n < 800). Then the following n rows describe the picture to pixelate, where each row has n integers representing the original color values. The j-th integer in the i-th row is the color value of cell (i, j) of the picture. Color values are nonnegative integers and will not exceed 1,000,000,000 (10^9).

After the description of the picture, there is an integer Q (Q ≤ 100000 (10^5)), indicating the number of mosaics.

Then Q actions follow: the i-th row gives the i-th replacement made by the God of sheep: xi, yi, Li (1 ≤ xi, yi ≤ n, 1 ≤ Li < 10000, Li is odd). This means the God of sheep will change the color value in (xi, yi) (located at row xi and column yi) according to the Li x Li region as described above. For example, an query (2, 3, 3) means changing the color value of the cell at the second row and the third column according to region (1, 2) (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4). Notice that if the region is not entirely inside the picture, only cells that are both in the region and the picture are considered.

Note that the God of sheep will do the replacement one by one in the order given in the input.
 

Output
For each test case, print a line "Case #t:"(without quotes, t means the index of the test case) at the beginning.

For each action, print the new color value of the updated cell.
 

Sample Input
   
   
   
   
1 3 1 2 3 4 5 6 7 8 9 5 2 2 1 3 2 3 1 1 3 1 2 3 2 2 3
 

Sample Output
   
   
   
   
Case #1: 5 6 3 4 6
 

Source
2013 Asia Regional Changchun
 

Recommend
liuyiding   |   We have carefully selected several similar problems for you:   5065  5064  5062  5061  5059 
  题意:
给你一个n*n(n<=800)的格子。每个格子里开始有一些数字。然后q个操作
x y  L  把x行y列的格子里的数字变成以x,y格子为中心边长为L的正方形区域里(数字最大值+数字最小值)/2.
然后输出修改后的值。
思路:
二维线段树。就是线段树每个结点也是一个线段树。先按x建线段树,然后在x线段树的每个结点按y建线段树,更新修改跟一维类似。看看代码就懂了。
详细见代码:
#include<algorithm>
#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=810;
typedef long long ll;
#define lson L,mid,ls
#define rson mid+1,R,rs
struct Tree
{
    int mav[maxn<<2][maxn<<2],miv[maxn<<2][maxn<<2];
    int n,m,x,y,val,isleaf,x1,y1,x2,y2,xrt,amav,amiv;
    void buildy(int L,int R,int rt)
    {
        if(L==R)
        {
            if(isleaf)
            {
                scanf("%d",&mav[xrt][rt]);
                miv[xrt][rt]=mav[xrt][rt];
            }
            else
            {
                mav[xrt][rt]=max(mav[xrt<<1][rt],mav[xrt<<1|1][rt]);
                miv[xrt][rt]=min(miv[xrt<<1][rt],miv[xrt<<1|1][rt]);
            }
            return;
        }
        int ls=rt<<1,rs=ls|1,mid=(L+R)>>1;
        buildy(lson);
        buildy(rson);
        mav[xrt][rt]=max(mav[xrt][ls],mav[xrt][rs]);
        miv[xrt][rt]=min(miv[xrt][ls],miv[xrt][rs]);
    }
    void buildx(int L,int R,int rt)
    {
        if(L==R)
        {
            xrt=rt,isleaf=1;
            buildy(1,m,1);
            return;
        }
        int ls=rt<<1,rs=ls|1,mid=(L+R)>>1;
        buildx(lson);
        buildx(rson);
        xrt=rt,isleaf=0;
        buildy(1,m,1);
    }
    void build(int nn,int mm)
    {
        n=nn,m=mm;
        buildx(1,n,1);
    }
    void updatey(int L,int R,int rt)
    {
        if(L==R)
        {
            if(isleaf)
                mav[xrt][rt]=miv[xrt][rt]=val;
            else
            {
                mav[xrt][rt]=max(mav[xrt<<1][rt],mav[xrt<<1|1][rt]);
                miv[xrt][rt]=min(miv[xrt<<1][rt],miv[xrt<<1|1][rt]);
            }
            return;
        }
        int ls=rt<<1,rs=ls|1,mid=(L+R)>>1;
        if(y<=mid)
            updatey(lson);
        else
            updatey(rson);
        mav[xrt][rt]=max(mav[xrt][ls],mav[xrt][rs]);
        miv[xrt][rt]=min(miv[xrt][ls],miv[xrt][rs]);
    }
    void updatex(int L,int R,int rt)
    {
        if(L==R)
        {
            xrt=rt,isleaf=1;
            updatey(1,m,1);
            return;
        }
        int ls=rt<<1,rs=ls|1,mid=(L+R)>>1;
        if(x<=mid)
            updatex(lson);
        else
            updatex(rson);
        xrt=rt,isleaf=0;
        updatey(1,m,1);
    }
    void update(int xx,int yy,int v)
    {
        x=xx,y=yy,val=v;
        updatex(1,n,1);
    }
    void queryy(int L,int R,int rt)
    {
        if(y1<=L&&R<=y2)
        {
            amav=max(amav,mav[xrt][rt]);
            amiv=min(amiv,miv[xrt][rt]);
            return;
        }
        int ls=rt<<1,rs=ls|1,mid=(L+R)>>1;
        if(y1<=mid)
            queryy(lson);
        if(y2>mid)
            queryy(rson);
    }
    void queryx(int L,int R,int rt)
    {
        if(x1<=L&&R<=x2)
        {
            xrt=rt;
            queryy(1,m,1);
            return;
        }
        int ls=rt<<1,rs=ls|1,mid=(L+R)>>1;
        if(x1<=mid)
            queryx(lson);
        if(x2>mid)
            queryx(rson);
    }
    void query(int xx1,int yy1,int xx2,int yy2)
    {
        x1=xx1,y1=yy1,x2=xx2,y2=yy2;
        amav=-1,amiv=INF;
        queryx(1,n,1);
    }
} tree;
int main()
{
    int t,cas=1,n,m,i,x,y,len,x1,y1,x2,y2,ans;

    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        tree.build(n,n);
        printf("Case #%d:\n",cas++);
        scanf("%d",&m);
        for(i=0;i<m;i++)
        {
            scanf("%d%d%d",&x,&y,&len);
            len=len>>1;
            x1=max(1,x-len),y1=max(1,y-len);
            x2=min(n,x+len),y2=min(n,y+len);
            tree.query(x1,y1,x2,y2);
            ans=(tree.amav+tree.amiv)>>1;
            tree.update(x,y,ans);
            printf("%d\n",ans);
        }
    }
    return 0;
}

用自己以前的想法写了一发。还是过了。不过用时多一点。以前我想的就是把平面分成四份。
|+|左上为4*rt-2.右上为4*rt-1.左下为4*rt.右下为4*rt+1.然后就跟一维差不多。加标记什么的也可以了。
详细见代码:
#include<algorithm>
#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=810*810;
typedef long long ll;
#define lson L,mid,ls
#define rson mid+1,R,rs
int mav[maxn<<2],miv[maxn<<2],x,y,val,x1,y1,x2,y2,amav,amiv;
void update(int U,int D,int L,int R,int rt)
{
    if(U==D&&L==R)
    {
        mav[rt]=miv[rt]=val;
        return;
    }
    int xmid=(U+D)>>1,ymid=(L+R)>>1,ss=rt<<2;
    if(U==D)
    {
        if(y<=ymid)
            update(U,D,L,ymid,ss-2);
        else
            update(U,D,ymid+1,R,ss-1);
        mav[rt]=max(mav[ss-2],mav[ss-1]);
        miv[rt]=min(miv[ss-2],miv[ss-1]);
        return;
    }
    if(L==R)
    {
        if(x<=xmid)
            update(U,xmid,L,R,ss-2);
        else
            update(xmid+1,D,L,R,ss);
        mav[rt]=max(mav[ss-2],mav[ss]);
        miv[rt]=min(miv[ss-2],miv[ss]);
        return;
    }
    if(x<=xmid)
    {
        if(y<=ymid)
            update(U,xmid,L,ymid,ss-2);
        else
            update(U,xmid,ymid+1,R,ss-1);
    }
    else
    {
        if(y<=ymid)
            update(xmid+1,D,L,ymid,ss);
        else
            update(xmid+1,D,ymid+1,R,ss+1);
    }
    mav[rt]=max(max(mav[ss-2],mav[ss-1]),max(mav[ss],mav[ss+1]));
    miv[rt]=min(min(miv[ss-2],miv[ss-1]),min(miv[ss],miv[ss+1]));
}
void qu(int U,int D,int L,int R,int rt)
{
    if(x1<=U&&D<=x2&&y1<=L&&R<=y2)
    {
        amav=max(amav,mav[rt]);
        amiv=min(amiv,miv[rt]);
        return;
    }
    int xmid=(U+D)>>1,ymid=(L+R)>>1,ss=rt<<2;
    if(U==D)
    {
        if(y1<=ymid)
            qu(U,D,L,ymid,ss-2);
        if(y2>ymid)
            qu(U,D,ymid+1,R,ss-1);
        return;
    }
    if(L==R)
    {
        if(x1<=xmid)
            qu(U,xmid,L,R,ss-2);
        if(x2>xmid)
            qu(xmid+1,D,L,R,ss);
        return;
    }
    if(x1<=xmid&&y1<=ymid)
        qu(U,xmid,L,ymid,ss-2);
    if(x1<=xmid&&y2>ymid)
        qu(U,xmid,ymid+1,R,ss-1);
    if(x2>xmid&&y1<=ymid)
        qu(xmid+1,D,L,ymid,ss);
    if(x2>xmid&&y2>ymid)
        qu(xmid+1,D,ymid+1,R,ss+1);
}
int main()
{
    int t,cas=1,n,m,i,j,len,ans;

    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                scanf("%d",&val);
                x=i,y=j;
                update(1,n,1,n,1);
            }
        }
        printf("Case #%d:\n",cas++);
        scanf("%d",&m);
        for(i=0;i<m;i++)
        {
            scanf("%d%d%d",&x,&y,&len);
            len=len>>1;
            x1=max(1,x-len),y1=max(1,y-len);
            x2=min(n,x+len),y2=min(n,y+len);
            amiv=INF,amav=-1;
            qu(1,n,1,n,1);
            ans=(amav+amiv)>>1;
            val=ans;
            update(1,n,1,n,1);
            printf("%d\n",ans);
        }
    }
    return 0;
}


你可能感兴趣的:(c,算法,ACM)