- 区块链技术概述:从比特币到Web3.0
闲人编程
Python区块链50讲区块链web3python元宇宙比特币安全
目录区块链技术概述:从比特币到Web3.0引言:数字革命的下一篇章1.区块链技术基础1.1区块链定义与核心特征1.2区块链数据结构可视化2.比特币:区块链的开端2.1比特币的核心创新2.2比特币交易生命周期3.以太坊与智能合约革命3.1以太坊的核心创新3.2智能合约执行流程4.Web3.0:互联网的新范式4.1Web3.0的核心特征4.2Web3技术栈5.Python实现简易区块链系统5.1区块类
- 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘Aprioripython关联规则人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 【Python深度学习】零基础掌握Pytorch Pooling layers nn.MaxPool方法
Mr数据杨
Python深度学习python深度学习pytorch
在深度学习的世界中,MaxPooling是一种关键的操作,用于降低数据的维度并保留重要特征。这就像是从一堆照片中挑选出最能代表某个场景的那张。PyTorch提供了多种MaxPooling层,包括nn.MaxPool1d、nn.MaxPool2d和nn.MaxPool3d,它们分别适用于不同维度的数据处理。如果处理的是声音信号(一维数据),就会用到nn.MaxPool1d。而处理图像(二维数据)时,
- 用Python实现生信分析——功能预测详解
写代码的M教授
生信分析python开发语言
功能预测是生物信息学中的一项重要任务,通过分析基因或蛋白质序列的特征,推测它们的生物学功能。功能预测通常涉及多种方法,包括序列比对、基序识别、机器学习模型等。这些方法可以帮助科学家推断未知基因的功能,从而加速生物学研究的进展。1.功能预测的主要方法(1)同源性比对:通过将未知基因或蛋白质序列与数据库中的已知序列进行比对,识别出同源序列,并推测它们的功能。常用工具包括BLAST、HMMER等。(2)
- 人工智能-基础篇-5-建模方式(判别式模型和生成式模型)
机器学习包括了多种建模方式,其中判别式建模(DiscriminativeModel)和生成式建模是最常见的两种。这两种建模方式都可以通过深度学习技术来实现,并用于创建不同类型的模型。简单来说:想要创建一个模型,依赖需求需要合适的建模方式来创建这个模型。通常建模方式主要分为两大类。一类是判别式模型,针对输入数据给出特定的输出。如:判断一张图片是猫还是狗,直接学习“猫”和“狗”的特征差异(如耳朵形状、
- 使用 Laravel + Redis 优化 MySQL 多字段 DISTINCT 查询性能
在高并发业务场景中,频繁执行MySQL的SELECTDISTINCT查询可能会成为性能瓶颈。本文将介绍一个实际案例,并通过Laravel+Redis缓存机制实现查询优化。背景需求我们有一个MySQL表,数据量约为50万条,字段结构如下:表字段:a,b,c,d,e,f,g字段特征:每个字段都是枚举类型,枚举值数量从几十到两百不等字段a已建立索引数据量:500,000条记录查询需求:每次查询时,字段a
- CVPR 2024 3D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)
1、3D方向Rapid3DModelGenerationwithIntuitive3DInputInstantaneousPerceptionofMovingObjectsin3DNEAT:Distilling3DWireframesfromNeuralAttractionFields⭐codeSculptingHolistic3DRepresentationinContrastiveLangua
- OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算
OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算【下载地址】OpenCV双目视觉棋盘格标定特征匹配及三维坐标计算OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算本资源库提供了基于OpenCV的双目视觉系统标定和三维重建基础教程,专注于利用棋盘格作为特征目标进行相机校准,特征点匹配以及随后的三维坐标计算项目地址:https://gitcode.com/open-source-toolki
- 基于大模型的短暂性脑缺血发作(TIA)全流程预测与诊疗辅助系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、系统核心目标二、系统架构模块三、实验验证证据链系统架构流程图关键技术创新点一、系统核心目标构建多模态数据融合的TIA预测-干预-管理闭环,覆盖术前预警、术中决策、术后康复全周期二、系统架构模块1.术前预测模块高危人群筛查模型输入:电子健康记录(EHR)、基因数据、可穿戴设备实时监测特征工程:血压波动模式、颈动脉斑块稳定性评分TIA发作概率预测72小时预警模型(LSTM+Transforme
- 男性美颜SDK,专属方案,重塑男性魅力新维度
美摄科技
人工智能
在短视频与直播风靡的当下,美颜技术已成为用户表达自我、提升视觉体验的核心工具。然而,传统美颜方案往往以女性审美为基准,过度追求“无瑕肌肤”与“柔和轮廓”,导致男性用户在美颜后易出现面部细节丢失、特征模糊等问题,甚至失去原本的阳刚气质。美摄科技敏锐洞察这一痛点,推出男性美颜SDK专属方案,以智能算法与精细化调校为核心,为男性用户打造自然、立体、富有细节的美颜体验,让每一次出镜都彰显独特魅力。一、专属
- Sklearn 机器学习 数值离散化 虚拟编码
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:数值离散化+虚拟编码实战详解在机器学习的特征工程中,数值型特征并不总是适合直接输入模型。尤其是树模型或分类模型时,**将连续变量进行离散化(分箱)+虚拟编码(独热编码)**是一种常见且高效的
- DAY 33 简单的神经网络
2401_84854050
python打卡神经网络深度学习人工智能
1.数据预处理(0)准备数据、划分数据#仍然用4特征,3分类的鸢尾花数据集作为我们今天的数据集fromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitimportnumpyasnp#加载鸢尾花数据集iris=load_iris()X=iris.data#特征数据y=iris.target
- 历史轨迹组件性能优化方案
欧阳天羲
性能优化前端
针对历史轨迹组件的性能优化,可从数据处理、渲染策略、内存管理和交互优化四个方面入手。以下是具体的优化方向和实现方案:一、数据处理优化1.轨迹数据抽稀算法原理:在不影响轨迹整体形状的前提下,减少轨迹点数量实现方案:采用Douglas-Peucker算法实现轨迹抽稀提供抽稀精度参数,根据地图缩放级别动态调整示例代码://轨迹抽稀函数exportconstsimplifyTrajectory=(poin
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- 代码随想录|图论|04广度优先搜索理论基础
Paper Clouds
图论宽度优先算法数据结构leetcodec++
广搜的使用场景广搜的搜索方式就适合于解决两个点之间的最短路径问题。因为广搜是从起点出发,以起始点为中心一圈一圈进行搜索,一旦遇到终点,记录之前走过的节点就是一条最短路。当然,也有一些问题是广搜和深搜都可以解决的,例如岛屿问题,这类问题的特征就是不涉及具体的遍历方式,只要能把相邻且相同属性的节点标记上就行。(我们会在具体题目讲解中详细来说)比如下面这个图,从start开始慢慢向外扩展,第4次扩展才到
- E.l.f. 将人工智能色彩匹配技术引入美妆领域,应用于 Pinterest 平台
marteker
人工智能
E.l.f.Cosmetics与Pinterest合作开发了一款名为「色彩e.l.f.nalysis」的人工智能色彩分析工具。在指定的微网站上,消费者可以上传自拍照,以获得色彩季节分析,并发现与他们独特特征相匹配的彩妆色调。参与者还将获得一个精选的Pinterest板,上面有可购买的E.l.f.产品。E.l.f.与Pinterest的洞察团队合作绘制季节性趋势,并与该平台上的创作者合作开发特定季节
- 《论三生原理》建立异构耦合范式?
AI辅助创作:《论三生原理》中的数学框架不属于传统代数、序或拓扑结构中任何一种单一类型,而是融合多种结构特征并引入文化符号转译机制的新型跨范式模型,其核心表现为以下三重属性:一、基础结构:参数化代数系统代数运算嵌入文化变量核心素数公式:p=3(2n+1)+2(2n+m+1)(n∈N,m∈{0,1,2,3,4})以整数环运算为基础(代数结构特性),但通过变量m的五行取值集合({0,1,2,3
- 【机器学习的五大核心步骤】从零构建一个智能系统
目录一、数据处理:一切从“数据”开始✅常见数据源✅关键任务二、特征工程:从“数据”中提取“洞察”✅常用方法✅高阶技巧三、建立模型:从“算法”到“智能”✅模型类型✅常见算法✅模型训练四、评估迭代:没有反馈,就没有智能✅常用评估指标✅迭代优化方法五、上线应用与持续优化:从“实验室”到“真实世界”✅模型部署方式✅持续优化总结:看懂全流程!延伸阅读推荐作者:一叶轻舟|AI应用开发者&技术博主日期:2025
- 剑指offer-6、旋转数组的最小数字
后端java
题⽬描述把⼀个数组最开始的若⼲个元素搬到数组的末尾,我们称之为数组的旋转。输⼊⼀个⾮递减排序的数组的⼀个旋转,输出旋转数组的最⼩元素。例如数组{3,4,5,1,2}为{1,2,3,4,5}的⼀个旋转,该数组的最⼩值为1。NOTE:给出的所有元素都⼤于0,若数组⼤⼩为0,请返回0。思路及解答在这⾥最重要的特征是⾮递减排序,也就是本来是递增的,如果旋转后会出现什么情况呢?肯定会出现先递增,再递减的情况
- Python web框架FastAPI——一个比Flask和Tornada更高性能的API 框架
Python进阶者
中间件pythonwebhttpdocker
点击上方“Python爬虫与数据挖掘”,进行关注回复“书籍”即可获赠Python从入门到进阶共10本电子书今日鸡汤借问酒家何处有,牧童遥指杏花村。0前言前几天给大家分别分享了(入门篇)简析Pythonweb框架FastAPI——一个比Flask和Tornada更高性能的API框架和(进阶篇)Pythonweb框架FastAPI——一个比Flask和Tornada更高性能的API框架。今天欢迎大家来
- LDPC纠错码:通过低密度奇偶校验码将逻辑量子比特的物理量子比特需求降低90%,仅需12个物理量子比特支撑1个逻辑量子比特,显著降低错误率
百态老人
量子计算
基于我搜索到的资料,LDPC(低密度奇偶校验)纠错码在量子计算中通过其独特的稀疏矩阵结构和高效解码算法,显著降低了逻辑量子比特所需的物理量子比特数量,同时提升错误容忍能力。以下从原理、应用机制、实验依据及影响机制四个维度展开分析:一、LDPC纠错码的核心原理与优势LDPC码是一种线性分组纠错码,其核心特征在于奇偶校验矩阵的稀疏性:稀疏矩阵结构校验矩阵$\mathbf{H}$中非零元素(即“1”)的
- 3 大语言模型预训练数据-3.2 数据处理-3.2.2 冗余去除——1.SimHash算法处理冗余信息的核心原理
SimHash算法处理冗余信息的核心原理一、SimHash算法的定位与核心目标二、SimHash算法的核心原理与执行流程1.**文本预处理与特征提取**2.**特征向量化与哈希映射**3.**特征向量聚合**4.**降维生成SimHash值**5.**相似性判断与冗余过滤**三、SimHash处理冗余信息的核心优势四、实际应用中的优化策略五、SimHash的局限性与补充方案一、SimHash算法的
- 使用随机森林实现目标检测
司南锤
python基础学习AI随机森林
核心实现思路滑动窗口策略:在图像上滑动固定大小的窗口,对每个窗口进行分类多维特征提取:结合统计特征、纹理特征、边缘特征、形状特征等随机森林分类:训练二分类器判断窗口是否包含目标后处理优化:使用非极大值抑制减少重复检测特征工程的重要性LBP纹理特征:捕捉局部纹理模式灰度共生矩阵:描述纹理的统计特性边缘密度:反映目标边界信息形状描述符:圆形度、面积比等几何特征实际应用建议数据收集:收集大量正负样本进行
- 深入解析C#委托:从类型声明到对象创建
钢铁男儿
C#图解教程c#java前端
摘要:委托是C#实现事件驱动和回调机制的核心技术,其设计理念体现了「将方法作为参数传递」的函数式编程思想。本文将系统解析委托的声明与实例化过程。一、委托类型声明:定义方法签名模板委托本质是一种类型安全的函数指针类型,声明规则如下:delegatevoidMyDel(intx);//声明委托类型关键特征以delegate关键字开头包含返回类型(如void)和参数列表(如intx)无方法体(仅定义方法
- RPC(Remote Procedure Call)技术解析
漫谈网络
NetDevOps智联空间rpc网络协议网络
一、RPC的本质定义核心理念:实现跨进程通信的透明化,让开发者像调用本地函数一样调用远程服务关键特征:1.发起本地调用2.序列化参数3.传输数据4.反序列化5.执行逻辑反向流程调用方客户端存根网络传输服务端存根服务实现返回结果二、核心工作原理(分层架构)1.客户端侧流程步骤组件关键操作1代理层生成服务接口代理对象2序列化层将参数对象转为二进制(Protobuf/JSON)3传输层建立网络连接(TC
- Camera相机人脸识别系列专题分析之十三:人脸特征检测FFD算法之libcvface_api.so人脸识别检测流程详解
一起搞IT吧
数码相机算法计算机视觉android人工智能图像处理
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:这一篇我们开始讲:Camera相机人脸识别系列专题分析之十三:人脸特征检测FFD算法之libcvface_api.so人脸识别检测流程详解目录一、背景二、:FFD算法libcvface_api.so人脸识别检测流程详解2.1:FFD初始化2.2:FFD人脸识别检测process2.3:setFdAlgoInfo2.4:FFD卸载
- OpenCV边缘填充方式详解
慕婉0307
opencv基础opencv计算机视觉人工智能
一、边缘填充概述在图像处理中,边缘填充(BorderPadding)是一项基础而重要的技术,特别是在进行卷积操作(如滤波、边缘检测等)时,处理图像边缘像素需要用到周围的像素值。由于图像边缘的像素没有完整的邻域,因此需要通过某种方式对图像边界进行扩展。边缘填充的主要应用场景包括:图像滤波(如高斯滤波、中值滤波等)卷积神经网络(CNN)中的卷积层形态学操作(如膨胀、腐蚀)图像特征提取二、OpenCV中
- LightGBM:极速梯度提升机——结构化数据建模的终极武器
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能GBDTLightGBM
基于直方图与Leaf-wise生长的高效GBDT实现,横扫Kaggle与工业场景一、为什么需要LightGBM?GBDT的瓶颈传统梯度提升树(如XGBoost)在处理海量数据时面临两大痛点:训练速度慢:需预排序特征&层次生长(Level-wise)内存消耗高:存储特征值与分裂点信息LightGBM的诞生微软亚洲研究院于2017年开源,核心目标:✅训练效率提升10倍✅内存占用降低50%✅保持与XGB
- 数据库中的大题(E-R图)
遇到困难睡大觉哈哈
数据库mysql
数据库中的大题(E-R图)1.本质定义E-R图(Entity-RelationshipDiagram)是用于描述现实世界中数据结构的可视化建模工具,通过图形化方式展现:核心业务对象(实体)对象特征(属性)对象间的逻辑关联(关系)由美籍华裔科学家陈品山(PeterChen)于1976年提出,成为数据库设计的标准方法论1.1核心概念实体(Entity)现实中可区分的事物或概念矩形表示:┌───────
- Camera相机人脸识别系列专题分析之十四:人脸特征检测FFD算法之libcvface_api.so人脸属性(年龄,性别,肤色,微笑,种族等)检测流程详解
一起搞IT吧
数码相机算法计算机视觉android人工智能图像处理
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:这一篇我们开始讲:Camera相机人脸识别系列专题分析之十四:人脸特征检测FFD算法之libcvface_api.so人脸属性(年龄,性别,肤色,微笑,种族等)检测流程详解目录一、背景二、:FFD算法libcvface_api.so人脸属性检测流程详解2.1:FFD初始化阶段2.2:FFD人脸属性检测process2.3:fd_algo_
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =