leetcode 296: Best Meeting Point

Best Meeting Point

Total Accepted: 701 Total Submissions: 1714 Difficulty: Medium

A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated usingManhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

For example, given three people living at (0,0), (0,4), and(2,2):

1 - 0 - 0 - 0 - 1
|   |   |   |   |
0 - 0 - 0 - 0 - 0
|   |   |   |   |
0 - 0 - 1 - 0 - 0

The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.

[思路]

二维的等于一维的相加, 一维的最小点必在median点(用反证法可以证明).

[CODE]

public class Solution {
    //(0,0), (0,4), and (2,2)
    public int minTotalDistance(int[][] grid) {
        List<Integer> x = new ArrayList<>();
        List<Integer> y = new ArrayList<>();
        
        for(int i=0; i<grid.length; i++) {
            for(int j=0; j<grid[0].length; j++) {
                if(grid[i][j]==1) {
                    x.add(i);
                    y.add(j);
                }
            }
        }
        
        return getMP(x) + getMP(y);
    }
    
    private int getMP(List<Integer> l) {
        Collections.sort(l);
        int i=0, j=l.size()-1;
        int res = 0;
        while(i<j) {
            res += l.get(j--) - l.get(i++);
        }
        return res;
    }
}



你可能感兴趣的:(leetcode 296: Best Meeting Point)