Linux下I2C驱动架构全面分析

本文转至 http://www.linuxidc.com/Linux/2014-05/101648.htm, 原作者不详, 如作者看到此文, 请告知笔者署名。

最近在看Linux驱动架构, 因为之前接触过无操作系统的I2C驱动的写法, 所以详细了解了下Linux下I2C驱动的架构和写法,过程中参考了许多网上的文章, 发现此篇文章写得最好, 故转载,以便以后查阅。


I2C是philips提出的外设总线. 

I2C只有两条线,一条串行数据线:SDA,一条是时钟线SCL ,使用SCLSDA这两根信号线就实现了设备之间的数据交互,它方便了工程师的布线。 

因此,I2C总线被非常广泛地应用在EEPROM,实时钟,小型LCD等设备与CPU的接口中。 

相关阅读: 

I2C子系统之at24c02读写测试 http://www.linuxidc.com/Linux/2012-08/68256.htm
I2C子系统之ioctl() http://www.linuxidc.com/Linux/2012-08/68257.htm
I2C子系统之at24c02简介 http://www.linuxidc.com/Linux/2012-08/68258.htm
I2C子系统之总结 http://www.linuxidc.com/Linux/2012-08/68259.htm
I2C子系统之内核中I2C子系统的结构 http://www.linuxidc.com/Linux/2012-08/68260.htm
I2C子系统之I2C bus初始化——I2C_init() http://www.linuxidc.com/Linux/2012-08/68261.htm
I2C子系统之platfor_device初始化——smdk2440_machine_init() http://www.linuxidc.com/Linux/2012-08/68262.htm
I2C子系统之platform_driver初始化——I2C_adap_s3c_init() http://www.linuxidc.com/Linux/2012-08/68263.htm
I2C子系统之I2C总线时钟频率设置 http://www.linuxidc.com/Linux/2012-08/68264.htm
I2C子系统之adapter deviceclient device注册——I2C_add_number_adapter() http://www.linuxidc.com/Linux/2012-08/68265.htm
I2C子系统之__I2C_first_dynamic_bus_num变量的相关分析 http://www.linuxidc.com/Linux/2012-08/68266.htm
I2C子系统之 adapter driver注册——I2C_dev_init() http://www.linuxidc.com/Linux/2012-08/68267.htm
I2C子系统之write() http://www.linuxidc.com/Linux/2012-08/68268.htm 

Linux下的驱动思路 

在linux系统下编写I2C驱动,目前主要有两种方法一种是把I2C设备当作一个普通的字符设备来处理另一种是利用linux下I2C驱动体系结构来完成。下面比较下这两种方法:
第一种方法:
优点:思路比较直接,不需要花很多时间去了解linux中复杂的I2C子系统的操作方法。
缺点
要求工程师不仅要对I2C设备的操作熟悉,而且要熟悉I2C的适配器(I2C控制器)操作。
要求工程师对I2C的设备器及I2C的设备操作方法都比较熟悉,最重要的是写出的程序可以移植性差。
对内核的资源无法直接使用,因为内核提供的所有I2C设备器以及设备驱动都是基于I2C子系统的格式。

第一种方法的优点就是第二种方法的缺点,
第一种方法的缺点就是第二种方法的优点。 

 

I2C架构概述 

Linux的I2C体系结构分为3个组成部分


I2C核心:I2C核心提供了I2C总线驱动和设备驱动的注册,注销方法,I2C通信方法(”algorithm”)上层的,与具体适配器无关的代码以及探测设备,检测设备地址的上层代码等。


I2C总线驱动:I2C总线驱动是对I2C硬件体系结构中适配器端的实现,适配器可由CPU控制,甚至可以直接集成在CPU内部。


I2C设备驱动:I2C设备驱动(也称为客户驱动)是对I2C硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU交换数据。

 

 

linux驱动中i2c驱动架构 



上图完整的描述了linux i2c驱动架构,虽然I2C硬件体系结构比较简单,但是i2c体系结构在linux中的实现却相当复杂。

那么我们如何编写特定i2c接口器件的驱动程序?就是说上述架构中的那些部分需要我们完成,而哪些是linux内核已经完善的或者是芯片提供商已经提供的? 

 

架构层次分类

第一层:提供i2c adapter的硬件驱动,探测、初始化i2c adapter(如申请i2cio地址和中断号),驱动soc控制的i2c adapter在硬件上产生信号(startstopack)以及处理i2c中断。覆盖图中的硬件实现层 

第二层:提供i2c adapteralgorithm,用具体适配器的xxx_xferf()函数来填充i2c_algorithmmaster_xfer函数指针,并把赋值后的i2c_algorithm再赋值给i2c_adapteralgo指针。覆盖图中的访问抽象层、i2c核心层 

第三层:实现i2c设备驱动中的i2c_driver接口,用具体的i2c device设备的attach_adapter()detach_adapter()方法赋值给i2c_driver的成员函数指针。实现设备device与总线(或者叫adapter)的挂接。覆盖图中的driver驱动层 

第四层:实现i2c设备所对 应的具体device的驱动,i2c_driver只是实现设备与总线的挂接,而挂接在总线上的设备则是千差万别的,所以要实现具体设备device的 write()read()ioctl()等方法,赋值给file_operations,然后注册字符设备(多数是字符设备)。覆盖图中的driver驱动层 

 

第一层和第二层又叫i2c总线驱动(bus),第三第四属于i2c设备驱动(device driver) 

linux驱动架构中,几乎不需要驱动开发人员再添加bus,因为linux内核几乎集成所有总线bus,如usbpcii2c等等。并 且总线bus中的(与特定硬件相关的代码)已由芯片提供商编写完成,例如三星的s3c-2440平台i2c总线bus/drivers/i2c /buses/i2c-s3c2410.c

第三第四层与特定device相干的就需要驱动工程师来实现了。 

 

 

Linux下I2C体系文件构架 

Linux内核源代码中的driver目录下包含一个i2c目录 

Linux下I2C驱动架构全面分析_第1张图片


i2c-core.c这个文件实现了I2C核心的功能以及/proc/bus/i2c*接口。
i2c-dev.c实 现了I2C适配器设备文件的功能,每一个I2C适配器都被分配一个设备。通过适配器访设备时的主设备号都为89,次设备号为0-255I2c- dev.c并没有针对特定的设备而设计,只是提供了通用的read(),write(),ioctl()等接口,应用层可以借用这些接口访问挂接在适配 器上的I2C设备的存储空间或寄存器,并控制I2C设备的工作方式。
busses文件夹这个文件中包含了一些I2C总线的驱动,如针对S3C2410S3C2440S3C6410等处理器的I2C控制器驱动为i2c-s3c2410.c.
algos文件夹实现了一些I2C总线适配器的algorithm. 

 

 

重要的结构体 

i2c_driver

1 struct i2c_driver {  
2 unsigned int class;  

3 int (*attach_adapter)(struct i2c_adapter *);//依附i2c_adapter函数指针  
4 int (*detach_adapter)(struct i2c_adapter *);//脱离i2c_adapter函数指针  
5 int (*probe)(struct i2c_client *, const struct i2c_device_id *);  
6 int (*remove)(struct i2c_client *);  
7 void (*shutdown)(struct i2c_client *);  
8 int (*suspend)(struct i2c_client *, pm_message_t mesg);  
9 int (*resume)(struct i2c_client *); 
10 void (*alert)(struct i2c_client *, unsigned int data); 
11 int (*command)(struct i2c_client *client, unsigned int cmd, void*arg);//命令列表 
12 struct device_driver driver; 
13 const struct i2c_device_id *id_table;//该驱动所支持的设备ID表 
14 int (*detect)(struct i2c_client *, struct i2c_board_info *); 
15 const unsigned short *address_list; 
16 struct list_head clients; 
17 };


 

i2c_client 

1 struct i2c_client {  
2 unsigned short flags;//标志   
3 unsigned short addr; //低7位为芯片地址   
4 char name[I2C_NAME_SIZE];//设备名称  
5 struct i2c_adapter *adapter;//依附的i2c_adapter  
6 struct i2c_driver *driver;//依附的i2c_driver   
7 struct device dev;//设备结构体   
8 int irq;//设备所使用的结构体   
9 struct list_head detected;//链表头 10 };


i2c_adapter 

1 struct i2c_adapter {  
2 struct module *owner;//所属模块  
3 unsigned int id;//algorithm的类型,定义于i2c-id.h,  
4 unsigned int class;  
5 const struct i2c_algorithm *algo; //总线通信方法结构体指针  
6 void *algo_data;//algorithm数据  
7 struct rt_mutex bus_lock;//控制并发访问的自旋锁  
8 int timeout;  
9 int retries;//重试次数 
10 struct device dev; //适配器设备  
11 int nr; 
12 char name[48];//适配器名称 
13 struct completion dev_released;//用于同步 
14 struct list_head userspace_clients;//client链表头 
15 };

i2c_algorithm 

1 struct i2c_algorithm { 
2 int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs, int num);//I2C传输函数指针 
3 int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,unsigned short flags, char read_write,u8 command, int size, union 
4 i2c_smbus_data *data);//smbus传输函数指针 
5 u32 (*functionality) (struct i2c_adapter *);//返回适配器支持的功能 
6 };


各结构体的作用与它们之间的关系

i2c_adapteri2c_algorithm

i2c_adapter对应与物理上的一个适配器,而i2c_algorithm对应一套通信方法,一个i2c适配器需要i2c_algorithm中提供的(i2c_algorithm中的又是更下层与硬件相关的代码提供)通信函数来控制适配器上产生特定的访问周期。缺少i2c_algorithmi2c_adapter什么也做不了,因此i2c_adapter中包含其使用i2c_algorithm的指针。

i2c_algorithm中的关键函数master_xfer()用于产生i2c访问周期需要的start stop ack信号,以i2c_msg(即i2c消息)为单位发送和接收通信数据。

i2c_msg也非常关键,调用驱动中的发送接收函数需要填充该结构体

1 struct i2c_msg { 
2 __u16 addr; /* slave address */ 
3  __u16 flags; 
4 __u16 len; /* msg length */ 
5 __u8 *buf; /* pointer to msg data */ 
6 };  

i2c_driveri2c_client

i2c_driver对应一套驱动方法,其主要函数是attach_adapter()detach_client()

i2c_client对应真实的i2c物理设备device每个i2c设备都需要一个i2c_client来描述

i2c_driveri2c_client的关系是一对多。一个i2c_driver上可以支持多个同等类型的i2c_client.

i2c_adapteri2c_client

i2c_adapteri2c_client的关系与i2c硬件体系中适配器和设备的关系一致,即i2c_client依附于i2c_adapter,由于一个适配器上可以连接多个i2c设备,所以i2c_adapter中包含依附于它的i2c_client的链表。

 

i2c驱动架构图中可以看出,linux内核对i2c架构抽象了一个叫核心层core的中间件,它分离了设备驱动device driver和硬件控制的实现细节(如操作i2c的寄存器),core层不但为上面的设备驱动提供封装后的内核注册函数,而且还为小面的硬件事件提供注册接口(也就是i2c总线注册接口),可以说core层起到了承上启下的作用。

 

 

具体分析

先看一下i2c-core为外部提供的核心函数(选取部分),i2c-core对应的源文件为i2c-core.c,位于内核目录/driver/i2c/i2c-core.c

1 EXPORT_SYMBOL(i2c_add_adapter); 
2 EXPORT_SYMBOL(i2c_del_adapter); 
3 EXPORT_SYMBOL(i2c_del_driver); 
4 EXPORT_SYMBOL(i2c_attach_client); 
5 EXPORT_SYMBOL(i2c_detach_client); 
6 
7 EXPORT_SYMBOL(i2c_transfer);  


i2c_transfer()函 数:i2c_transfer()函数本身并不具备驱动适配器物理硬件完成消息交互的能力,它只是寻找到i2c_adapter对应的 i2c_algorithm,并使用i2c_algorithmmaster_xfer()函数真正的驱动硬件流程,代码清单如下,不重要的已删除。

1 int i2c_transfer(struct i2c_adapter * adap, struct i2c_msg *msgs, int num)  
2 {  
3 int ret;  

4 if (adap->algo->master_xfer) {//如果master_xfer函数存在,则调用,否则返回错误   

5 ret = adap->algo->master_xfer(adap,msgs,num);//这个函数在硬件相关的代码中给algorithm赋值   

6 return ret;  

7 } else {  

8 return -ENOSYS;  

9  } 

10 }  

当一个具体的client被侦测到并被关联的时候,设备和sysfs文件将被注册。

相反的,在client被取消关联的时候,sysfs文件和设备也被注销,驱动开发人员在开发i2c设备驱动时,需要调用下列函数。程序清单如下

 1 int i2c_attach_client(struct i2c_client *client)  

2 {  

3  ...  

4 device_register(&client->dev);  

5 device_create_file(&client->dev, &dev_attr_client_name);  

6  ...  

7 return 0;  

8 }  

9 

10 

11 [cpp] view plaincopy 

12 int i2c_detach_client(struct i2c_client *client) 

13 { 

14  ... 

15 device_remove_file(&client->dev, &dev_attr_client_name); 

16 device_unregister(&client->dev); 

17  ... 

18 return res; 

19 }  


i2c_add_adapter()函数和i2c_del_adapter()i2c-davinci.c中有调用,稍后分析

1 int i2c_add_adapter(struct i2c_adapter *adap)  

2 {  

3  ...  

4 device_register(&adap->dev);  

5 device_create_file(&adap->dev, &dev_attr_name);  

6  ...  

7 /* inform drivers of new adapters */  

8 list_for_each(item,&drivers) {  

9 driver = list_entry(item, struct i2c_driver, list); 

10 if (driver->attach_adapter) 

11 /* We ignore the return code; if it fails, too bad */ 

12 driver->attach_adapter(adap); 

13  } 

14  ... 

15 } 

16 

17 

18 

19 int i2c_del_adapter(struct i2c_adapter *adap) 

20 { 

21  ... 

22 list_for_each(item,&drivers) { 

23 driver = list_entry(item, struct i2c_driver, list); 

24 if (driver->detach_adapter) 

25 if ((res = driver->detach_adapter(adap))) { 

26  } 

27  } 

28  ... 

29 list_for_each_safe(item, _n, &adap->clients) { 

30 client = list_entry(item, struct i2c_client, list); 

31 

32 if ((res=client->driver->detach_client(client))) { 

33 

34  } 

35  } 

36  ... 

37 device_remove_file(&adap->dev, &dev_attr_name); 

38 device_unregister(&adap->dev); 

39 

40 }  



i2c-davinci.c是实现与硬件相关功能的代码集合,这部分是与平台相关的,也叫做i2c总线驱动,这部分代码是这样添加到系统中的

1 static struct platform_driver davinci_i2c_driver = {  

2 .probe      = davinci_i2c_probe,  

3 .remove     = davinci_i2c_remove,  

4 .driver     = {  

5 .name   = "i2c_davinci",  

6 .owner  = THIS_MODULE,  

7  },  

8 };  

9 

10 /* I2C may be needed to bring up other drivers */ 

11 static int __init davinci_i2c_init_driver(void) 

12 { 

13 return platform_driver_register(&davinci_i2c_driver); 

14 } 

15 subsys_initcall(davinci_i2c_init_driver); 

16 

17 static void __exit davinci_i2c_exit_driver(void) 

18 { 

19 platform_driver_unregister(&davinci_i2c_driver); 

20 } 

21 module_exit(davinci_i2c_exit_driver);  


并且,i2c适配器控制硬件发送接收数据的函数在这里赋值给i2c-algorithmi2c_davinci_xfer稍加修改就可以在裸机中控制i2c适配器

1 static struct i2c_algorithm i2c_davinci_algo = { 

2 .master_xfer    = i2c_davinci_xfer, 

3 .functionality  = i2c_davinci_func, 

4 }; 



然后在davinci_i2c_probe函数中,将i2c_davinci_algo添加到添加到algorithm系统中

1 adap->algo = &i2c_davinci_algo;

 

适配器驱动程序分析 

linux系统中,适配器驱动位于linux目录下的\drivers\i2c\busses下,不同的处理器的适配器驱动程序设计有差异,但是总体思路不变。 

在适配器的驱动中,实现两个结构体非常关键,也是整个适配器驱动的灵魂。 

下面以某个适配器的驱动程序为例进行说明: 

1 static struct platform_driver tcc_i2c_driver = {  

2 .probe   = tcc_i2c_probe,  

3 .remove   = tcc_i2c_remove,  

4 .suspend  = tcc_i2c_suspend_late,  

5 .resume   = tcc_i2c_resume_early,  

6 .driver   = {  

7 .owner  = THIS_MODULE,  

8 .name  = "tcc-i2c",  

9  }, 

10 };


以上说明这个驱动是基于平台总线的,这样实现的目的是与CPU紧紧联系起来。 

1 static const struct i2c_algorithm tcc_i2c_algorithm = { 

2 .master_xfer = tcc_i2c_xfer, 

3 .functionality = tcc_i2c_func, 

4 };


这个结构体也是非常的关键,这个结构体里面的函数tcc_i2c_xfer是适配器算法的实现,这个函数实现了适配器与I2C CORE的连接。 

tcc_i2c_func是指该适配器所支持的功能。

tcc_i2c_xfer这个函数实质是实现I2C数据的发送与接收的处理过程。不同的处理器实现的方法不同,主要表现在寄存器的设置与中断的处理方法上。

把握上面的两点去分析适配器程序就简单多了。

 

 

I2C-core驱动程序分析 

I2C-core.c这个函数中,把握下面的几个关键函数就可以了。 

1 //增加/删除i2c_adapter  

2 int i2c_add_adapter(struct i2c_adapter *adapter)  

3 int i2c_del_adapter(struct i2c_adapter *adap)  

4  

5 //增加/删除i2c_driver  

6 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)  

7 void i2c_del_driver(struct i2c_driver *driver)  

8  

9 //i2c_client依附/脱离 

10 int i2c_attach_client(struct i2c_client *client) 

11 

12 //增加/删除i2c_driver 

13 int i2c_register_driver(struct module *owner, struct i2c_driver *driver) 

14 void i2c_del_driver(struct i2c_driver *driver) 

15 

16 //i2c_client依附/脱离 

17 int i2c_attach_client(struct i2c_client *client) 

18 int i2c_detach_client(struct i2c_client *client) 

19 

20 //I2C传输,发送和接收 

21 int i2c_master_send(struct i2c_client *client,const char *buf ,int count) 

22 int i2c_master_recv(struct i2c_client *client, char *buf ,int count) 

23 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)

 

I2c_transfer这个函数实现了coreadapter的联系。 

 

 

代码调用层次图

有时候代码比任何文字描述都来得直接,但是过多的代码展示反而让人觉得枯燥。这个时候,需要一幅图来梳理一下上面的内容

Linux下I2C驱动架构全面分析_第2张图片


上面这些代码的展示是告诉我们:linux内核和芯片提供商为我们的的驱动程序提供了 i2c驱动的框架,以及框架底层与硬件相关的代码的实现。 

剩下的就是针对挂载在i2c两线上的i2c设备了device,而编写的即具体设备驱动了,这里的设备就是硬件接口外挂载的设备,而非硬件接口本身(soc硬件接口本身的驱动可以理解为总线驱动) 

 

 

编写驱动需要完成的工作 

编写具体的I2C驱动时,工程师需要处理的主要工作如下: 

1).提供I2C适配器的硬件驱动,探测,初始化I2C适配器(如申请I2C的I/O地址和中断号),驱动CPU控制的I2C适配器从硬件上产生。

2).提供I2C控制的algorithm, 用具体适配器的xxx_xfer()函数填充i2c_algorithm的master_xfer指针,并把i2c_algorithm指针赋给i2c_adapter的algo指针。

3).实现I2C设备驱动中的i2c_driver接口,用具体yyy的 yyy_probe(),yyy_remove(),yyy_suspend(),yyy_resume()函数指针和i2c_device_id设备 ID表赋给i2c_driver的probe,remove,suspend,resume和id_table指针。

4).实现I2C设备所对应类型的具体驱动,i2c_driver只是实现设备与总线的挂接。

上面的工作中前两个属于I2C总线驱动,后面两个属于I2C设备驱动。



你可能感兴趣的:(c,linux,i2c,linux驱动)