动态规划——最长公共子序列

最长公共子序列的概念:
若 Z < X,Z < Y,且不存在比Z更长的X 和Y 的公共子序列,则称Z是X 和Y 的最长公共子序列,记为Z∈LCS(X , Y)。
问题:找出X 和Y 的一个最长公共子序列?
引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。
我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们
根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。

LCSTestMain.c

#include  < stdio.h >
#include 
< string .h >
#define  MAXLEN 100

void  LCSLength( char   * x,  char   * y,  int  m,  int  n,  int  c[][MAXLEN],  int  b[][MAXLEN])
{
    
int i, j;
    
    
for(i = 0; i <= m; i++)
        c[i][
0= 0;
    
for(j = 1; j <= n; j++)
        c[
0][j] = 0;
    
for(i = 1; i<= m; i++)
    
{
        
for(j = 1; j <= n; j++)
        
{
            
if(x[i-1== y[j-1])
            
{
                c[i][j] 
= c[i-1][j-1+ 1;
                b[i][j] 
= 0;
            }

            
else if(c[i-1][j] >= c[i][j-1])
            
{
                c[i][j] 
= c[i-1][j];
                b[i][j] 
= 1;
            }

            
else
            
{
                c[i][j] 
= c[i][j-1];
                b[i][j] 
= -1;
            }

        }

    }

}


void  PrintLCS( int  b[][MAXLEN],  char   * x,  int  i,  int  j)
{
    
if(i == 0 || j == 0)
        
return;
    
if(b[i][j] == 0)
    
{
        PrintLCS(b, x, i
-1, j-1);
        printf(
"%c ", x[i-1]);
    }

    
else if(b[i][j] == 1)
        PrintLCS(b, x, i
-1, j);
    
else
        PrintLCS(b, x, i, j
-1);
}


int  main( int  argc,  char   ** argv)
{
    
char x[MAXLEN] = {"ABCBDAB"};
    
char y[MAXLEN] = {"BDCABA"};
    
int b[MAXLEN][MAXLEN];
    
int c[MAXLEN][MAXLEN];
    
int m, n;
    
    m 
= strlen(x);
    n 
= strlen(y);
    
    LCSLength(x, y, m, n, c, b);
    PrintLCS(b, x, m, n);
    
    
return 0;
}


算法分析:
由于每次调用至少向上或向左(或向上向左同时)移动一步,故最多调用(m + n)次就会遇到i = 0或j = 0的情况,此时开始返回。返回时与递归调用时方向相反,步数相同,故算法时间复杂度为Θ(m + n)。

 

你可能感兴趣的:(c,算法,String)