You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the query.
The last test case is followed by a line containing a single 0.
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
1 4 3
A naive algorithm may not run in time!
题意:
给出一个非降序的整数数组,你的任务是对于一系列询问,回答区间内出现最多的值的次数
思路:
因为这个数组是非降序的,所以可以把所有相等的元素组合起来用二元组表示,例如-1,1,1,2,2,2,4就可以表示为(-1,1)(1,2)(2,3)(4,1),其中(a,b)代表有b个连续的a。
val[i]代表第i段的数值
cnt[i]代表第i段连续的长度
num[i]表示第i个位置的数在那一段
lef[i],righ[i]分别表示第i段的左右端点位置
所求的最大值就是
1.从L到L所在的段的结束处的元素个数:righ[L]-L+1
2.从R到R所在的段的开始处的元素个数:R-lef[R]+1
3.中间第num[L]+1段到第num[R]-1段的cnt的最大值(RMQ)
答案就是1,2,3中的最大值
#include <iostream> #include <stdio.h> #include <string.h> #include <stack> #include <queue> #include <map> #include <set> #include <vector> #include <math.h> #include <bitset> #include <algorithm> #include <climits> using namespace std; #define LS 2*i #define RS 2*i+1 #define UP(i,x,y) for(i=x;i<=y;i++) #define DOWN(i,x,y) for(i=x;i>=y;i--) #define MEM(a,x) memset(a,x,sizeof(a)) #define W(a) while(a) #define gcd(a,b) __gcd(a,b) #define LL long long #define N 100005 #define MOD 1000000007 #define INF 0x3f3f3f3f #define EXP 1e-8 #define lowbit(x) (x&-x) int n,q; int a[N]; int val[N],cnt[N],num[N],lef[N],righ[N]; int d[N][50],len; void RMQ_init() { int i,j,k; for(i = 1; i<=len; i++) d[i][0] = cnt[i]; for(j = 1; (1<<j)<=len+1; j++) for(i = 1; i+(1<<j)-1<=len; i++) d[i][j] = max(d[i][j-1],d[i+(1<<(j-1))][j-1]); } int RMQ(int l,int r) { int k = 0; while((1<<(k+1)) <= r-l+1) k++; return max(d[l][k],d[r-(1<<k)+1][k]); } int main() { int i,j,k,l,r; while(~scanf("%d",&n),n) { scanf("%d",&q); len = 1; MEM(cnt,0); scanf("%d",&a[1]); val[len] = a[1]; cnt[len] = 1; num[1] = len; lef[0] = 1; for(i = 2; i<=n; i++) { scanf("%d",&a[i]); if(a[i]==a[i-1]) { cnt[len]++; num[i] = len; } else { righ[len] = i-1; len++; val[len] = a[i]; cnt[len] = 1; num[i] = len; lef[len] = i; } } RMQ_init(); while(q--) { scanf("%d%d",&l,&r); if(num[l]==num[r]) { printf("%d\n",r-l+1); } else { int ans=0; if(num[l]+1<=num[r]-1) ans=RMQ(num[l]+1,num[r]-1); ans = max(ans,max(righ[num[l]]-l+1,r-lef[num[r]]+1)); printf("%d\n",ans); } } } return 0; }