- 高斯混合模型GMM&K均值(十三-1)——K均值是高斯混合模型的特例
phoenix@Capricornus
模式识别与机器学习均值算法机器学习算法
EM算法与K均值算法的关系K均值可以看成是高斯混合模型的特例。对K均值算法与EM算法进行比较后,可以发现它们之间有很大的相似性。K均值算法将数据点硬(hard)分配到聚类中,每个数据点唯一地与一个聚类相关联,而EM算法基于后验概率进行软(soft)分配。事实上,可以从EM算法推导出K均值算法。考虑一个高斯混合模型,其中混合分量的协方差矩阵由σ2I{\sigma^2}Iσ2I给出,其中σ2{\sig
- Transformer底层原理解析及基于pytorch的代码实现
LiRuiJie
人工智能transformerpytorch深度学习
1.Transformer底层原理解析1.1核心架构突破Transformer是自然语言处理领域的革命性架构,其核心设计思想完全摒弃了循环结构,通过自注意力机制实现全局依赖建模。整体架构图如下:以下是其核心组件:1)自注意力机制(Self-Attention)-输入序列的每个位置都能直接关注所有位置-数学公式(缩放点积注意力):-Q:查询矩阵(当前关注点)-K:键矩阵(被比较项)-V:值矩阵(实际
- 力扣网C语言编程题:搜索二维矩阵(右上角->左下角解法)
魏劭
逻辑编程题C语言算法leetcodec语言
一.简介上一篇文章关于"在二维数组中查找某个元素"的问题,提供了两种解题思路,文章如下:力扣网C语言编程题:搜索二维矩阵的普通解法与二分查找法-CSDN博客本文提供第三种解题思路:从左下角->右上角,或者右上角->左下角。二.力扣网C语言编程题:搜索二维矩阵(右上角->左下角解法)解题思路三:(换行或换列)因为题目中,数组中元素是每行元素是递增的,同时,每一行的首元素比上一行最后一个元素大,那么,
- 大模型笔记10:LoRA微调
errorwarn
笔记
LoRA微调的原理矩阵的秩矩阵的秩代表一个矩阵中所含信息的大小。行秩:矩阵中互相不重复、不依赖(即线性无关)的行的最大数目。列秩:矩阵中互相不重复、不依赖的列的最大数目。事实上,行秩和列秩总是相等的,因此我们通常直接称之为“矩阵的秩”。Transformer中微调哪些参数:LoRA的改进版本
- 数据库系统工程师简要概括笔记
Mint_Datazzh
数据库系统工程师数据库笔记数据库系统工程师
文章内容仅为粗略总结知识,便于个人复习思考原文链接:数据库系统工程师简要概括笔记–笔墨云烟数据库系统工程师—1.1计算机硬件基础知识数据库系统工程师—1.2计算机体系结构与存储系统数据库系统工程师—1.3安全性、可靠性与系统性能评测基础知识数据库系统工程师—2.程序语言基础知识数据库系统工程师—3.1~3.4线性结构、数组和矩阵、树和二叉树、图数据库系统工程师—3.5排序算法数据库系统工程师—3.
- Python打卡训练营Day26
宸汐Fish_Heart
Python打卡训练pythonjava数据库
@浙大疏锦行DAY26函数专题1知识点回顾:1.函数的定义2.变量作用域:局部变量和全局变量3.函数的参数类型:位置参数、默认参数、不定参数4.传递参数的手段:关键词参数5.传递参数的顺序:同时出现三种参数类型时作业:题目1:计算圆的面积●任务:编写一个名为calculate_circle_area的函数,该函数接收圆的半径radius作为参数,并返回圆的面积。圆的面积=π*radius²(可以使
- 学习AI机器学习所需的数学基础
frostmelody
机器学习小知识点人工智能学习机器学习
一、机器学习岗位的数学需求矩阵机器学习岗位研究型职位工业界职位DeepMind/Meta/Google研究部门研究科学家/研究工程师普通科技公司机器学习工程师/数据科学家需硕士/博士数学水平本科数学基础二、数学需求深度解析1.研究型职位(需深度数学)学历要求:数学/物理/计算机/统计/工程本科基础硕士/博士优先(Kaggle调查显示博士占比高)薪资关联:学历与收入呈正相关2.工业界职位(基础数学)
- MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码算法matlab神经网络大数据人工智能深度学习机器学习
目录MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)1项目背景介绍...1项目目标与意义...2项目挑战...3项目特点与创新...5<
- 【机器学习】数学基础——张量(傻瓜篇)
一叶千舟
深度学习【理论】机器学习人工智能
目录前言一、张量的定义1.标量(0维张量)2.向量(1维张量)3.矩阵(2维张量)4.高阶张量(≥3维张量)二、张量的数学表示2.1张量表示法示例三、张量的运算3.1常见张量运算四、张量在深度学习中的应用4.1PyTorch示例:张量在神经网络中的运用五、总结:张量的多维世界延伸阅读前言在机器学习、深度学习以及物理学中,张量是一个至关重要的概念。无论是在人工智能领域的神经网络中,还是在高等数学、物
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- MySQL之锁机制详解:全局锁,表级锁,行级锁
AA-代码批发V哥
MySQLmysql数据库
MySQL之锁机制详解:全局锁,表级锁,行级锁一、锁机制基础:从并发问题到锁分类1.1并发访问的三大问题1.2锁的核心作用1.3锁粒度分类二、全局锁:掌控整个数据库的"超级锁"2.1全局锁原理2.2全局锁语法与使用2.2.1显式加锁2.2.2隐式加锁(备份场景)2.3全局锁的双刃剑三、表级锁:粗粒度的高效控制3.1表级锁核心特性锁兼容性矩阵:3.2MyISAM表级锁实战3.2.1加锁示例3.2.2
- 基于51单片机开发多功能菜单系统项目介绍(开源)
菜鸟—历险记
51单片机嵌入式硬件单片机
51单片机多功能菜单系统一、项目介绍基于51单片机开发的多功能菜单系统是一种集成多种功能的嵌入式系统,广泛应用于电子产品中,该系统的核心是AT89C52芯片,其强大的处理能力和丰富的外设接口使其成为许多项目的理想选择。这是一个有趣且实用的项目,可以帮助用户实现多种功能,我设计了的功能有:矩阵键盘输入密码、PWM直流电机驱动风扇调速、DS18B20温度监控、光敏电阻检测模块、加减乘除计算器、人的BM
- 认识Jacobian
一碗姜汤
统计学习线性代数矩阵
Jacobian(雅可比矩阵)是数学中用于描述多元函数在某一点处导数的重要概念,广泛应用于微积分、微分几何、数值分析等领域。以下从定义、数学表达、几何意义、应用场景等方面详细解析:一、定义与数学表达1.基本定义若有一个从欧式空间Rn\mathbb{R}^nRn到Rm\mathbb{R}^mRm的多元函数:f:Rn→Rmf:\mathbb{R}^n\to\mathbb{R}^mf:Rn→Rm,其分量
- 亚矩阵云手机:优化海外平台Appodeal多账号广告套利的新利器
云手机指导员
大数据unity矩阵网络安全云计算线性代数
Appodeal作为一个综合性的广告中介平台,整合了众多广告源,为开发者和广告商提供了多样化的广告变现途径。广告套利作为一种常见的盈利策略,通过在不同渠道投放广告并利用差价获取利润。然而,Appodeal为保障平台的公平性和广告质量,设置了严格的风控机制,传统的多账号广告套利面临诸多挑战。亚矩阵云手机凭借其独特的技术优势,为解决这些问题提供了有效的方案,助力实现多账号广告套利的优化。一、Appod
- 3秒搞定DeepSeek数学公式转Word!学生党救星(附代码实测)
Uyker
python编辑器
适用场景:论文交稿deadline/报告美化/作业急救工具白嫖指南:免费+免安装方案优先一、终极方案:Mathpix截图转公式(强推!)效果:复杂矩阵→完美还原步骤:复制DeepSeek输出的LaTeX代码(例)\vec{F}=q(\vec{E}+\vec{v}\times\vec{B})打开Mathpix官网→按Ctrl+Alt+M截取公式右键粘贴到Word→自动变身标准公式!✅优势:识别准确率
- c语言opencv所用库函数,Py之cv2:cv2库(OpenCV,opencv-python)的简介、安装、使用方法(常见函数、方法等)最强详细攻略...
weixin_39729272
c语言opencv所用库函数
##关于OpenCV简介##OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和MacOS操作系统上。它轻量级而且高效——由一系列C函数和少量C++类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留
- Day7 神经网络的矩阵基础
神经网络的矩阵基础一、矩阵的基本概念1.矩阵的定义与类型矩阵是一个按照长方阵列排列的复数或实数集合。在神经网络中,矩阵是表示和操作数据的基本结构。常见的矩阵类型包括:方阵:行数和列数相等的矩阵,记作n×nn×nn×n矩阵。行向量:只有一行的矩阵,可以看作是一个n×1n×1n×1的矩阵。列向量:只有一列的矩阵,可以看作是一个1×n1×n1×n的矩阵。单位矩阵:主对角线上的元素为1,其余元素为0的方阵
- OpenCV中创建Mat对象
Ethan@LM
opencv人工智能计算机视觉
第1章创建Mat对象1.1.创建空的Mat对象cv::Matmat;1.2.创建灰度图像//创建一个3行4列、8位无符号单通道矩阵(相当于灰度图)cv::Matmat(3,4,CV_8UC1);1.3.创建彩色图像//创建三通道矩阵(相当于彩色图像)cv::Matmat_color(480,640,CV_8UC3);CV_8UC1:8位无符号,单通道(灰度图)CV_8UC3:8位无符号,三通道(彩
- 华为OD 机试 2025 B卷 - 路灯照明问题 (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD2025B卷华为OD机考2025B卷华为OD机试2025B卷华为OD机试
路灯照明问题华为OD机试真题目录点击查看:华为OD机试2025B卷真题题库目录|机考题库+算法考点详解华为OD机试2025B卷100分题型题目描述在一条笔直的公路上安装了N个路灯,从位置0开始安装,路灯之间间距固定为100米。每个路灯都有自己的照明半径,请计算第一个路灯和最后一个路灯之间,无法照明的区间的长度和。输入描述第一行为一个数N,表示路灯个数,1<=N<=100000第二行为N个空格分隔的
- 详解3DGS
一碗姜汤
计算机视觉人工智能计算机视觉
4可微分的3D高斯splatting核心目标与表示选择我们的目标是从无法线的稀疏SfM点出发,优化出一种能够实现高质量新视角合成的场景表示。为此,我们选择3D高斯作为基本图元,它兼具可微分的体表示特性和非结构化的显式表示优势,既能支持优化过程,又能实现快速渲染。高斯参数与投影模型3D高斯定义高斯由世界空间中的均值(位置)μ\muμ和协方差矩阵∑\sum∑定义,其概率密度函数为:G(x)=e−12(
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- 数学:线性相关和线性无关的关系
千码君2016
数学线性代数系数唯一性定义法矩阵秩法行列式法高维空间的基线性方程组
在线性代数中,线性无关是描述向量组性质的重要概念,它反映了向量组中向量之间是否存在“冗余”或“依赖”关系。以下从定义、判断方法、几何意义及应用等方面详细说明:一、线性无关的定义才成立,则称该向量组线性无关。反之,若存在不全为0的系数使等式成立,则称向量组线性相关。二、核心理解:线性无关的本质三、线性无关的判断方法1.定义法(直接验证)2.矩阵秩法
- 从入门到精通:Spring MVC的矩阵参数、数据预处理与HTTP缓存实战
Solomon_肖哥弹架构
springmvcjavaSpringMVC
肖哥弹架构跟大家“弹弹”SpringMVC设计与实战应用,需要代码关注欢迎点赞,点赞,点赞。关注公号Solomon肖哥弹架构获取更多精彩内容历史热点文章MyCat应用实战:分布式数据库中间件的实践与优化(篇幅一)图解深度剖析:MyCat架构设计与组件协同(篇幅二)一个项目代码讲清楚DO/PO/BO/AO/E/DTO/DAO/POJO/VO写代码总被Dis:5个项目案例带你掌握SOLID技巧,代码有
- 《AI办公类工具PPT系列之七——智谱清言》
再见孙悟空_
【2025AI工具合集】人工智能iSlideAIAI智能PPTpowerpointAIPPTPPT
一.简介官网地址为chatglm.cn智谱清言(也被称为ChatGLM)是一款基于大模型技术的人工智能产品,旨在通过其强大的自然语言处理能力,为用户提供高效、智能的交互体验。该产品不仅具备广泛的应用场景,还能够在多个领域内实现深度学习和自我优化。二.功能介绍内容创作:创意写作:帮助用户进行故事、诗歌等文学作品的创作。媒体写作:辅助撰写新闻稿、社交媒体帖子等内容。写作辅助:提供写作建议、结构安排和编
- 小红书自热矩阵:低成本创业神器,轻松引流实现财富自由
qq_41756364
矩阵小红书小红书矩阵小红书克隆小红书引流
在当今这个充满机遇与挑战的时代,越来越多的人渴望通过低成本创业实现财富自由。而小红书自热矩阵系统的出现,无疑为众多创业者提供了一个强大的工具。一、小红书的巨大潜力小红书作为一款热门的社交电商平台,拥有庞大的用户群体和极高的活跃度。用户在这里分享生活点滴、购物心得、美妆技巧、旅游攻略等各种内容,形成了一个丰富多彩的社交生态。对于创业者来说,小红书不仅是一个展示产品和服务的平台,更是一个获取精准流量的
- 数学实验matlab课后习题,数学实验练习题(MATLAB)
沈洲行
数学实验matlab课后习题
注意:在下面的题目中m为你的学号的后3位(1-9班)或4位(10班以上).第一次练习题1.求解下列各题:1)30sinlimxmxmxx->-2)(4)cos,1000.0=xmxyey求3)21/20mxedx?(求近似值,可以先用inline定义被积函数,然后用quad命令)4)4224xdxmx+?50x=展开(最高次幂为8).2.对矩阵21102041Am-???=??-??,分别求逆矩阵
- 代码随想录|图论|05岛屿数量(深搜DFS)
Paper Clouds
图论深度优先算法数据结构leetcode
leetcode:99.岛屿数量题目题目描述:给定一个由1(陆地)和0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。输入描述:第一行包含两个整数N,M,表示矩阵的行数和列数。后续N行,每行包含M个数字,数字为1或者0。输出描述:输出一个整数,表示岛屿的数量。如果不存在岛屿,则输出0。思路遇到一个没有遍历过的节点陆
- PHP 找到最小半径 使得至少k个点位于圆内(Find minimum radius such that atleast k point lie inside the circle)
csdn_aspnet
PHPphp
给定一个正整数K,一个圆心在(0,0)处,以及一些点的坐标。任务是找到圆的最小半径,使得至少k个点位于圆内。输出最小半径的平方。例子:输入:(1,1),(-1,-1),(1,-1),k=3输出:2我们需要一个半径至少为2的圆来包含3个点。输入:(1,1),(0,1),(1,-1),k=2输出:1我们需要一个半径至少为1的圆来包含2个点。以(0,0)为圆心、半径为1的圆将包含(1,1)和(0,1)。
- 大厂硬件笔试题型和详细解析
启芯硬件笔记
经验分享
本专栏预计更新90期左右。当前第23期-大厂硬件综合.这个系列通过在国内外网上搜索大厂公开的笔试和面试题目,然后构造相关的知识点矩阵,让大家对核心的知识点有更深的认识,这个过程虽然耗时费力,但大厂的很多题目(包括模拟题)确实非常巧妙,很有代表性。由于官方没有发布过这样的题库,所以文章中的题目只能作为参考的范式,主要还是告诉读者解题的方法和考察的知识点。硬件工程师在面试过程中,需要展示出扎实的电路设
- 基于小波变换的数字信号调制识别
yong9990
matlab
基于小波变换的数字信号调制识别,通过matlab实现am_ofdm_classification.m,2926dvbt_table_gen.m,16437guard_interval.m,8441pilot_imag.m,9196pilot_real.m,9308randomization.m,9204sc_ofdm_wavelet.m,3439source.m,8486test_sc1.m,34
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。