POJ 3687--Labeling Balls【拓扑排序 && 逆序拓扑 && 输出在拓扑排序中的位置】

Labeling Balls
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12251   Accepted: 3509

Description

Windy has N balls of distinct weights from 1 unit to N units. Now he tries to label them with 1 to N in such a way that:

  1. No two balls share the same label.
  2. The labeling satisfies several constrains like "The ball labeled with a is lighter than the one labeled with b".

Can you help windy to find a solution?

Input

The first line of input is the number of test case. The first line of each test case contains two integers, N (1 ≤ N ≤ 200) and M (0 ≤ M ≤ 40,000). The next M line each contain two integers a and b indicating the ball labeled with a must be lighter than the one labeled with b. (1 ≤ a, b ≤ N) There is a blank line before each test case.

Output

For each test case output on a single line the balls' weights from label 1 to label N. If several solutions exist, you should output the one with the smallest weight for label 1, then with the smallest weight for label 2, then with the smallest weight for label 3 and so on... If no solution exists, output -1 instead.

Sample Input

5

4 0

4 1
1 1

4 2
1 2
2 1

4 1
2 1

4 1
3 2

Sample Output

1 2 3 4
-1
-1
2 1 3 4
1 3 2 4


题意是这样的:
给定几个标签球的重量大小关系,求每个球是第几重的(即每个球在所有球的重量中由小到大排名是多少)。
(输出是每个球第几重,而不是几号球比几号球重!)。
此题重点是:
1、需要逆序拓扑,找入读为零的点时要从大到小找。
2、注意最后的处理,是输出几号球是第几重的!!
例如:拓扑出的序列是1 4 2 3 5,就是4号球比1号球重,2号球比4号球重,输出序列是1 3 4 2 5,即1号球最轻,2号球第三轻

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#define maxn 30000 + 300
using namespace std;

char map[maxn];
int indu[maxn];
int head[maxn], cnt;
int n, m;
int a[maxn];

struct node {
    int u, v, next;
};

node edge[110000];

void init(){
    cnt = 0;
    memset(head, -1, sizeof(head));
    memset(indu, 0, sizeof(indu));
    memset(a, 0, sizeof(a));
}

void add(int u, int v){
    edge[cnt] = {u, v, head[u]};
    head[u] = cnt++;
}

void input(){
    scanf("%d%d", &n, &m);
    while(m--){
        int a, b;
        scanf("%d%d", &a, &b);
        add(b, a);
        indu[a]++;
    }
}

void topsort(){
    priority_queue<int>q;
    int ans = n;
    for(int i = 1; i <= n; ++i){
        if(!indu[i])
            q.push(i);
    }
    while(!q.empty()){
        int u = q.top();
        a[u] = ans--;
        q.pop();
        for(int i = head[u]; i != -1; i = edge[i].next){
            int v = edge[i].v;
            indu[v]--;
            if(!indu[v])
                q.push(v);
        }
    }
    if(ans == 0){
        for(int i = 1; i <= n; ++i){
            if(i == 1)
                printf("%d", a[i]);
            else
                printf(" %d", a[i]);
        }
        printf("\n");
    }
    else
        printf("-1\n");
}

int main (){
    int T;
    scanf("%d", &T);
    while(T--){
        init();
        input();
        topsort();
    }
    return 0;
}


你可能感兴趣的:(POJ 3687--Labeling Balls【拓扑排序 && 逆序拓扑 && 输出在拓扑排序中的位置】)