POJ1001

//高进度运算可以用字符解决,这道题用到大数乘法!!

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define LENGTH 6  //小数的位数(含小数点)

//将字符转化为数字
unsigned int change (char s[LENGTH], unsigned int s1[LENGTH - 1])
{
     int ss[LENGTH - 1];  //ss 放未逆置的整数
     memset (ss, 0, sizeof(ss));
    
     int k = 0 ;
     for (int i = 0; i < LENGTH && s[i]; ++i)  //考虑特殊数据如:0.0001
     {
         if (s[i] != '.')
            ss[k++] = s[i] - '0';
     }
     for (int j = 0;j < LENGTH - 1; j++)
     {
         s1[j] = ss[LENGTH - 2 - j]; 
     }
    
     int m = 0;
     while ( (s[m] != '.') && s[m] )
           ++m;
           return LENGTH - 1 - m;   //小数点位数
}

//大数乘法运算
//函数返回 s2
void mu1 (unsigned int s1[LENGTH - 1],unsigned int s2[130])
{
     int ss[130],i;
     memset ( ss, 0, sizeof(ss) );
    
     for (  i = 0; i < LENGTH - 1; i++)
         for (int j = 0;j < 130; j++)  //难点:因为返回新的s2之后位数会增加 最多时 5* 25 = 125
         ss [i + j] += s1[i] * s2[j];
    
     //将 两个大数相乘得的积ss中进行进位处理后放到s2 中 
     int c = 0;
     for (i = 0;i < 130;i++)
     {
         s2[i] = (c + ss[i]) % 10;
         c = (c + ss[i]) / 10;
     }
}

int main()
{
    int n,i;
    char s[LENGTH];  //要处理的幂 R
    unsigned int s1[LENGTH - 1];  //将 R 转化成数字
    unsigned int s2[130];
    
    while(scanf ("%s%d", s, &n) != EOF)
    {
        memset (s1, 0, sizeof (s1));
        memset (s2, 0, sizeof (s2));
       
        int j = change (s, s1);      //得到小数点所在位置
        change (s,s2);              //得到s2 和 s1 进行幂运算
        for ( i = 1; i < n; i ++)
            mu1 (s1,s2);
       
        //在s2中前面的代表小数位,表后面的代整数位,
        //所以关键是通过数值关系找到小数点的位置
     
     
         //例:0.1010  * 0.1010 = 0.01020100 
        int m = 129;//去掉前导0
        while ( (!s2[m]) && m)
        --m;
       
        int k = 0; //去掉尾0                      
        while ( ( !s2[k] ) && (k < 130))                                                          
        ++k;
       
        //输出整数位
        for ( i= m; i >= n * j; i--)
            printf ("%d",s2[i]);
           
        //输出小数点
        if ( j && n * j >= k + 1)
        printf (".");
       
        for ( i = n*j -1; i >= k; --i)
        printf ("%d", s2[i]);
        printf ("\n");
    }
   
    return 0;
   // system ("pause");  
}

你可能感兴趣的:(POJ1001)