排序二--堆排序

堆排序:


子结点的键值或索引总是小于(或者大于)它的父节点。
堆通过一维数组实现。在起始数组为 0 的情形中:
父节点i的左子节点在位置 (2*i+1);
父节点i的右子节点在位置 (2*i+2);
子节点i的父节点在位置 floor((i-1)/2);

堆中的最大值总是位于根节点。堆中定义以下几种操作:
1、最大堆调整(Max_Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点
2、创建最大堆(Build_Max_Heap):将堆所有数据重新排序
堆排序(HeapSort):移除位在第一个数据的根节 点,并做最大堆调整的递归运算
3、得到 堆底(0)有最大值。对换 堆底 和 堆顶值。
然后循环递归 上述操作,找最大值话到堆底,再把 堆底值到到未排序的元素的 “堆顶”。

 

 

 

package sort;

public class HeapSort {
    private static int[] sort = new int[]{8, 9, 2, 1, 4, 3, 5, 7, 6, 0};

    public static void main(String[] args) {
        buildMaxHeapify(sort);
        heapSort(sort);
        print(sort);
    }

    private static void buildMaxHeapify(int[] data) {
        //没有子节点的才需要创建最大堆,从最后一个的父节点开始
        int startIndex = getParentIndex(data.length - 1);
        //从尾端开始创建最大堆,每次都是正确的堆
        for (int i = startIndex; i >= 0; i--) {
            maxHeapify(data, data.length, i);
        }
    }

    /**
     * 创建最大堆
     * @param data
     * @param heapSize 需要创建最大堆的大小,一般在sort的时候用到,因为最多值放在末尾,末尾就不再归入最大堆了
     * @param index    当前需要创建最大堆的位置
     */
    private static void maxHeapify(int[] data, int heapSize, int index) {
        // 当前点与左右子节点比较
        int left = getChildLeftIndex(index);
        int right = getChildRightIndex(index);

        int largest = index;
        if (left < heapSize && data[index] < data[left]) {
            largest = left;
        }
        if (right < heapSize && data[largest] < data[right]) {
            largest = right;
        }
        //得到最大值后可能需要交换,如果交换了,其子节点可能就不是最大堆了,需要重新调整
        if (largest != index) {
            int temp = data[index];
            data[index] = data[largest];
            data[largest] = temp;
            maxHeapify(data, heapSize, largest);
        }
    }

    /**
     * 排序,最大值放在末尾,data虽然是最大堆,在排序后就成了递增的
     * @param data
     */
    private static void heapSort(int[] data) {
        //末尾与头交换,交换后调整最大堆
        for (int i = data.length - 1; i > 0; i--) {
            int temp = data[0];
            data[0] = data[i];
            data[i] = temp;
            maxHeapify(data, i, 0);
        }
    }

    /**
     * 父节点位置
     * @param current
     * @return
     */
    private static int getParentIndex(int current) {
        return (current - 1) >> 1;
    }

    /**
     * 左子节点position 注意括号,加法优先级更高
     * @param current
     * @return
     */
    private static int getChildLeftIndex(int current) {
        return (current << 1) + 1;
    }

    /**
     * 右子节点position
     * @param current
     * @return
     */
    private static int getChildRightIndex(int current) {
        return (current << 1) + 2;
    }

    private static void print(int[] data) {
        int pre = -2;
        for (int i = 0; i < data.length; i++) {
            if (pre < (int) getLog(i + 1)) {
                pre = (int) getLog(i + 1);
                System.out.println();
            }
            System.out.print(data[i] + " |");
        }
    }

    /**
     * 以2为底的对数
     * @param param
     * @return
     */
    private static double getLog(double param) {
        return Math.log(param) / Math.log(2);
    }
}


 

 

 

 

你可能感兴趣的:(排序二--堆排序)