leetcode笔记:Edit Distance

一. 题目描述

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

Insert a character
Delete a character
Replace a character

二. 题目分析

给定两个字符串word1和word2,算出讲word1转化成word2所需的最少编辑操作次数。允许的编辑操作包括以下三种:

将一个字符替换成另一个字符
在字符串中插入一个字符
删除字符串中的一个字符

例如将A(abc)转成B(acbc):

你可选择以下操作:
acc (b→c)替换
acb (c→b)替换
acbc (→c)插入

这不是最少编辑次数,因为其实只需要删除第二个字符c就可以了,这样只需操作一次。

使用i表示字符串word1的下标(从下标1开始),使用j表示字符串word2的下标。 用k[i][j]来表示word1[1, ... , i]word2[1, ... , j]之间的最少编辑操作数。则有以下规律:

k[i][0] = i;
k[0][j] = j;
k[i][j] = k[i - 1][j - 1] (if word1[i] == word2[j])
k[i][j] = min(k[i - 1][j - 1],
 k[i][j - 1],
 k[i - 1][j]) + 1 (if word1[i] != word2[j])

三. 示例代码

#include <iostream>
#include <string>
#include <vector>

using namespace std;

class Solution
{
public:
    int minDistance(const string &word1, const string &word2)
    {
        const size_t m = word1.size() + 1;
        const size_t n = word2.size() + 1;

        vector<vector<int> > k(m, vector<int>(n));

        for (size_t i = 0; i < m; ++i)
            k[i][0] = i;

        for (size_t j = 0; j < n; ++j)
            k[0][j] = j;

        for (size_t i = 1; i < m; ++i)
        {
            for (size_t j = 1; j < n; ++j)
            {
                if (word1[i - 1] == word2[j - 1])
                    k[i][j] = k[i - 1][j - 1];
                else
                    k[i][j] = min(k[i - 1][j - 1], min(k[i - 1][j], k[i][j - 1])) + 1;
            }
        }
        return k[m - 1][n - 1];
    }
};

leetcode笔记:Edit Distance_第1张图片

四. 小结

动态规划的经典题目,要快速写出状态转移方程还是有点难度的。

你可能感兴趣的:(LeetCode,C++,dp,动态规划,distance)