poj 2553(强连通分量)

 
The Bottom of a Graph
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 5383   Accepted: 2197

Description

We will use the following (standard) definitions from graph theory. Let  V be a nonempty and finite set, its elements being called vertices (or nodes). Let  E be a subset of the Cartesian product  V×V, its elements being called edges. Then  G=(V,E) is called a directed graph. 
Let  n be a positive integer, and let  p=(e1,...,en) be a sequence of length  n of edges  ei∈E such that  ei=(vi,vi+1) for a sequence of vertices  (v1,...,vn+1). Then  pis called a path from vertex  v1 to vertex  vn+1 in  G and we say that  vn+1 is reachable from  v1, writing  (v1→vn+1)
Here are some new definitions. A node  v in a graph  G=(V,E) is called a sink, if for every node  w in  G that is reachable from  vv is also reachable from  w. The bottom of a graph is the subset of all nodes that are sinks, i.e.,  bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph  G. Each test case starts with an integer number  v, denoting the number of vertices of  G=(V,E), where the vertices will be identified by the integer numbers in the set  V={1,...,v}. You may assume that  1<=v<=5000. That is followed by a non-negative integer  e and, thereafter,  e pairs of vertex identifiers  v1,w1,...,ve,we with the meaning that  (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0

Sample Output

1 3
2

Source

Ulm Local 2003
题目: http://poj.org/problem?id=2553
分析:这题也是很普通的强连通分量,跟上一题类似,不过没给出边的条数,最好用链表,我懒得写了。。。不过这题貌似50000左右的边,呵呵,之前不知道为什么wa了好多次,囧
代码:
#include<cstdio>
#define min(a,b) a<b?a:b
using namespace std;
const int mm=50005;
const int mn=5005;
int t[mm],p[mm];
int h[mn],id[mn],q[mn],dfn[mn],low[mn];
int i,j,k,n,m,tsp,qe,cnt;
void dfs(int u)
{
    int i,v;
    dfn[u]=low[q[qe++]=u]=++tsp;
    for(i=h[u];i>=0;i=p[i])
        if(!dfn[v=t[i]])
            dfs(v),low[u]=min(low[u],low[v]);
        else if(id[v]<0&&low[u]>dfn[v])low[u]=dfn[v];
    if(low[u]==dfn[u])
    {
        id[u]=++cnt;
        while((v=q[--qe])!=u)id[v]=cnt;
    }
}
void tarjan()
{
    int i;
    for(tsp=qe=cnt=i=0;i<=n;++i)id[i]=-1,dfn[i]=0;
    for(i=1;i<=n;++i)
        if(!dfn[i])dfs(i);
}
int main()
{
    while(scanf("%d",&n),n)
    {
        scanf("%d",&m);
        for(i=0;i<=n;++i)h[i]=-1;
        for(k=0;k<m;++k)
        {
            scanf("%d%d",&i,&j);
            t[k]=j,p[k]=h[i],h[i]=k;
        }
        tarjan();
        for(i=0;i<=cnt;++i)q[i]=0;
        for(i=1;i<=n;++i)
            if(!q[id[i]])
                for(j=h[i];j>=0;j=p[j])
                    if(id[i]!=id[t[j]])
                    {
                        ++q[id[i]];
                        break;
                    }
        for(i=1;i<=n;++i)
            if(!q[id[i]])printf("%d ",i);
        printf("\n");
    }
    return 0;
}


你可能感兴趣的:(Integer,Graph,input,each,output,Numbers)