所有应用程序,无论是自己写的最简单的测试程序还是复杂的OSAL操作系统,都必须从main( )来入口。所谓的OS操作系统,我们不妨这样想像:自己写一个最简单的main( ),里面就一句打印“Hello, World”.如果需要加入Key, LED这样的输入输出功能,那么就需要扩充main( ),加入Key, LED的驱动,如果要实现多线程调度,就要加入Timer驱动等等。其实操作系统就是这么来的,简单吧:)。
一般在OS中都会有个死循环,在这个循环中去处理各种各样的事件。在Zstack OSAL中,这个死循环就存在于osal_start_system()这个函数中。下面来详细分析在这个死循环中到底在做哪些事情。
2. OSAL的“心跳”
在OSAL的死循环中,各个事件只是在某些特定的情况下发生,如果OSAL一刻不停去轮询去处理这些应用程序,迟早会累死(热量,功耗,寿命…),这样做是完全没有必要的。所以这里就引入了心跳的概念,也就是OS的时钟节奏。在Zstack OSAL中这个节奏定义为1ms, 由8 bits HW_TIMER4来控制,当然这些都可以由程序员来修改,后面就以系统的默认值来讲述。在void InitBoard( byte level )这个函数中有下面这段代码就是在定义系统的心跳Timer。
HalTimerConfig (OSAL_TIMER,
HAL_TIMER_MODE_CTC, HAL_TIMER_CHANNEL_SINGLE,
HAL_TIMER_CH_MODE_OUTPUT_COMPARE,
OnboardTimerIntEnable,
Onboard_TimerCallBack);
在OSAL的Timer定义好了以后,就要启动Timer, 至于如何启动Timer, 请自行查阅2430 Spec, 我这里想说的是,在一步步跟踪源码到死循环开始,都没有发现启动OSAL Timer的代码,最后通过观察Timer相关的控制寄存器,发现,在网络层初始化函数nwk_init( taskID++ )执行完毕后Timer启动了,也就是说在网络层初始化函数中有启动Timer的语句,因为网络层初始化是不开源的,无从去看源代码验证,总之,Timer启动了就好。
每当1ms心跳来临时,Timer4的中断标志置位,这样在OSAL的死循环中检测到这个标志置位后,就去轮询处理各事件。没有检测到这个标志位则继续死循环。在死循环的开始有调用Hal_ProcessPoll()这条语句,实际上就是在查询中断标志并作相应的处理。
3. OSAL的“心跳”来临后的处理
上节提到Hal_ProcessPoll()这条语句,实际上就是在查询中断标志并作相应的处理。那么当1ms心跳来临时,我们跟踪进这个函数看看它到底干了些什么。
当判断到中断标志,表明1ms心跳来临了,就去调用Timer4相应的回调函数。这个回调函数由HalTimerConfig()的最后一个参数来定义,请回看上节,OSAL Timer的回调函数就是Onboard_TimerCallBack(),一步步跟进,最终调用osalTimerUpdate()这个函数。在这个函数中会去轮询Timer事件链表。
Timer事件链表是下面这样一个结构,next指向下一个Timer事件,timeout值表明本Timer事件还需要timeout个心跳才需要被处理,因为此处心跳是1ms,所以也就是说还需要timeout个ms才处理。所谓的处理也就是检测timeout是否小于1ms,如果小于1ms, 则发出event_flag这个消息到消息队列,这个消息隶属于task_id这个任务。如果大于1ms,说明该Timer事件还不到处理的时候,则Timeout = Timeout-1,然后继续耐心等待下一次心跳。注:Timer事件链表的维护是通过osal_start_timerEx()这个函数来实现的。
typedef struct
{
void *next;
UINT16 timeout;
UINT16 event_flag;
byte task_id;
} osalTimerRec_t;
4. 消息发出后的处理
上节讲到在心跳中发出任务的事件消息到消息队列。那么这个消息由谁来处理?回头再看osal_start_system( )中的死循环,有检测消息队列的语句,当发现有消息时,判断该消息隶属于哪个任务就去调用对应于该任务的消息处理函数。各任务的消息处理函数是在tasksArr[]这个常量数组中定义。这个数组中定义的消息处理函数和任务初始化函数中的任务必须一一对应。
5. 节电模式
细心的同学会发现在死循环体的后面有调用osal_pwrmgr_powerconserve()这样一条语句。从名字及注释来看,属于节电模式的调用。此处不详细列举代码,只讲其工作原理。
上面章节讲到1ms心跳来临时去轮询各事件Timer是否需要处理。这里心跳很快(1ms),各事件的Timeout很慢(往往成百上千)。譬如Key检测的Timer事件的Timeout是100,意思是说100ms才去检测一次是否有Key按下。假如说Key检测的Timout在各Timer事件中Timeout最小,那么也就是说有99次心跳都不会有事件需要处理,但是死循环依然在跑,在做无用功,为了解决这个问题,就加入了节电模式。
在osal_pwrmgr_powerconserve()这个函数中会检测Timer时间链表中Timeout最小的值,假设为next, 然后设定CPU进入休眠模式next个毫秒。休眠时间到了苏醒过来立即就会有Timer事件需要处理,这样就可以达到省电的目的。
6. 小结
到此为止,OSAL神秘面纱已完全揭开,为了巩固知识,下面以Key为例讲述从Key按下到Key消息被处理的整个过程。
首先在Key的初始化过程中会调用下面这条语句:osal_start_timerEx (Hal_TaskID, HAL_KEY_EVENT, HAL_KEY_POLLING_VALUE),这条语句的功能就是将检测Key的这个事件放入Timer事件链表。这个事件隶属于Hal_Task, Timeout是HAL_KEY_POLLING_VALUE。
当1ms心跳来临时,判断timeout是否小于1,如果不小于,则timeout=timeout-1并等待下一次心跳。如果小于1,则发出HAL_KEY_EVENT这个消息到消息队列,然后调用Hal_Task的事件处理函数Hal_ProcessEvent()处理HAL_KEY_EVENT消息,在处理这个消息的过程中调用函数HalKeyPoll()。这个函数检测当前有无按键,如果有按键并且和上次按键值不同则认为有新的按键按下并发出相应的按键消息。
在上面这个过程完成后,必须通过osal_start_timerEx()这个函数将Key检测事件继续放入Timer事件链表,以便后面心跳时能检测到该事件,也就是说每100ms都会扫描看有无按键按下。