目的:在同一时刻只允许一个应用程序打开/dev/***
下面试着在驱动中的open函数中加入:
static int canopen = 1; if(--canopen!=0) { canopen++; return -EBUSY; }加入这段代码的意思在app调用open函数打开对应的设备后,最终调用底层驱动的open函数,在这个open函数中,如果canopen不为0的话就canopen++然后退出。如果为0,就继续下面的打开初始化动作。
这种方法会在多任务操作系统下出现问题:
因为--canopen解析成汇编有下面的三个步骤:
a.读出
b.修改
c.写回
linux是个多任务的系统,会在进行b操作之前a操作之后被另一个应用修改。可能导致多个应用程序打开同一设备的现象。
那么如何避免这种现象的发生呢?
方法1:原子操作,这样会将读出,修改,写回的过程一次性的完成,不会发生上面的情况。
方法2:信号量
信号量和原子操作的区别是,第2个应用程序操作同一个设备的时候会将第2个程序加入到队列中,第一个应用程序结束后,会继续执行第2个应用程序(第2个应用程序处于僵死状态)
原子操作:
原子操作指的是在执行过程中不会被别的代码路径所中断的操作。
常用原子操作函数举例:
atomic_t v = ATOMIC_INIT(0); //定义原子变量v并初始化为0
atomic_read(atomic_t *v); //返回原子变量的值
void atomic_inc(atomic_t *v); //原子变量增加1
void atomic_dec(atomic_t *v); //原子变量减少1
int atomic_dec_and_test(atomic_t *v); //自减操作后测试其是否为0,为0则返回true,否则返回false。
原子操作示例:
#include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/irq.h> #include <asm/uaccess.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/arch/regs-gpio.h> #include <asm/hardware.h> #include <linux/poll.h> static struct class *sixthdrv_class; static struct class_device *sixthdrv_class_dev; //volatile unsigned long *gpfcon; //volatile unsigned long *gpfdat; static DECLARE_WAIT_QUEUE_HEAD(button_waitq); /* 中断事件标志, 中断服务程序将它置1,sixth_drv_read将它清0 */ static volatile int ev_press = 0; static struct fasync_struct *button_async; struct pin_desc{ unsigned int pin; unsigned int key_val; }; /* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */ /* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */ static unsigned char key_val; /* * K1,K2,K3,K4对应GPF1、GPF4、GPF2、GPF0 */ struct pin_desc pins_desc[4] = { {S3C2410_GPF1, 0x01}, {S3C2410_GPF4, 0x02}, {S3C2410_GPF2, 0x03}, {S3C2410_GPF0, 0x04}, }; static atomic_t canopen = ATOMIC_INIT(1); //定义原子变量canopen并将其初始化为1 /* * 确定按键值 */ static irqreturn_t buttons_irq(int irq, void *dev_id) { struct pin_desc * pindesc = (struct pin_desc *)dev_id; unsigned int pinval; pinval = s3c2410_gpio_getpin(pindesc->pin); if (pinval) { /* 松开 */ key_val = 0x80 | pindesc->key_val; } else { /* 按下 */ key_val = pindesc->key_val; } ev_press = 1; /* 表示中断发生了 */ wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */ kill_fasync (&button_async, SIGIO, POLL_IN); return IRQ_RETVAL(IRQ_HANDLED); } static int sixth_drv_open(struct inode *inode, struct file *file) { if (!atomic_dec_and_test(&canopen))//自减操作后测试canopen是否为0,为0则返回true,否则返回false。 { atomic_inc(&canopen);//做++操作 return -EBUSY;//返回BUSY状态 } /* GPF1、GPF4、GPF2、GPF0为中断引脚 */ request_irq(IRQ_EINT1, buttons_irq, IRQT_BOTHEDGE, "K1", &pins_desc[0]); request_irq(IRQ_EINT4, buttons_irq, IRQT_BOTHEDGE, "K2", &pins_desc[1]); request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "K3", &pins_desc[2]); request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "K4", &pins_desc[3]); return 0; } ssize_t sixth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) { if (size != 1) return -EINVAL; /* 如果没有按键动作, 休眠 */ wait_event_interruptible(button_waitq, ev_press); /* 如果有按键动作, 返回键值 */ copy_to_user(buf, &key_val, 1); ev_press = 0; return 1; } int sixth_drv_close(struct inode *inode, struct file *file) { atomic_inc(&canopen);//设备关闭后进行自加操作,返回canopen等于1的状态 free_irq(IRQ_EINT1, &pins_desc[0]); free_irq(IRQ_EINT4, &pins_desc[1]); free_irq(IRQ_EINT2, &pins_desc[2]); free_irq(IRQ_EINT0, &pins_desc[3]); return 0; } static unsigned sixth_drv_poll(struct file *file, poll_table *wait) { unsigned int mask = 0; poll_wait(file, &button_waitq, wait); // 不会立即休眠 if (ev_press) mask |= POLLIN | POLLRDNORM; return mask; } static int sixth_drv_fasync (int fd, struct file *filp, int on) { printk("driver: sixth_drv_fasync\n"); return fasync_helper (fd, filp, on, &button_async); } static struct file_operations sencod_drv_fops = { .owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */ .open = sixth_drv_open, .read = sixth_drv_read, .release = sixth_drv_close, .poll = sixth_drv_poll, .fasync = sixth_drv_fasync, }; int major; static int sixth_drv_init(void) { major = register_chrdev(0, "sixth_drv", &sencod_drv_fops); sixthdrv_class = class_create(THIS_MODULE, "sixth_drv"); sixthdrv_class_dev = class_device_create(sixthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */ // gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16); // gpfdat = gpfcon + 1; return 0; } static void sixth_drv_exit(void) { unregister_chrdev(major, "sixth_drv"); class_device_unregister(sixthdrv_class_dev); class_destroy(sixthdrv_class); // iounmap(gpfcon); return 0; } module_init(sixth_drv_init); module_exit(sixth_drv_exit); MODULE_LICENSE("GPL");
信号量(semaphore)是用于保护临界区的一种常用方法,只有得到信号量的进程才能执行临界区代码。当获取不到信号量时,进程进入休眠等待状态(这就是和原子操作的区别,原子操作如果当前被别的应用程序使用的话,就会立刻返回)。
定义信号量
struct semaphore sem;
初始化信号量
void sema_init (struct semaphore *sem, int val);//初始化信号量sem并设置它的值为val
void init_MUTEX(struct semaphore *sem);//初始化信号量并设置它为0
或者直接使用
static DECLARE_MUTEX(button_lock); //定义互斥锁
获得信号量
void down(struct semaphore * sem);
int down_interruptible(struct semaphore * sem);//试着去获取信号量,获取不了则休眠,但是会被中断打断
int down_trylock(struct semaphore * sem);//试着去获取信号量,如果获取不了就立刻返回
释放信号量
void up(struct semaphore * sem);
例子:
#include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/irq.h> #include <asm/uaccess.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/arch/regs-gpio.h> #include <asm/hardware.h> #include <linux/poll.h> static struct class *sixthdrv_class; static struct class_device *sixthdrv_class_dev; //volatile unsigned long *gpfcon; //volatile unsigned long *gpfdat; static DECLARE_WAIT_QUEUE_HEAD(button_waitq); /* 中断事件标志, 中断服务程序将它置1,sixth_drv_read将它清0 */ static volatile int ev_press = 0; static struct fasync_struct *button_async; struct pin_desc{ unsigned int pin; unsigned int key_val; }; /* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */ /* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */ static unsigned char key_val; /* * K1,K2,K3,K4对应GPF1、GPF4、GPF2、GPF0 */ struct pin_desc pins_desc[4] = { {S3C2410_GPF1, 0x01}, {S3C2410_GPF4, 0x02}, {S3C2410_GPF2, 0x03}, {S3C2410_GPF0, 0x04}, }; static DECLARE_MUTEX(button_lock); //定义互斥锁,并初始化它 /* * 确定按键值 */ static irqreturn_t buttons_irq(int irq, void *dev_id) { struct pin_desc * pindesc = (struct pin_desc *)dev_id; unsigned int pinval; pinval = s3c2410_gpio_getpin(pindesc->pin); if (pinval) { /* 松开 */ key_val = 0x80 | pindesc->key_val; } else { /* 按下 */ key_val = pindesc->key_val; } ev_press = 1; /* 表示中断发生了 */ wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */ kill_fasync (&button_async, SIGIO, POLL_IN); return IRQ_RETVAL(IRQ_HANDLED); } static int sixth_drv_open(struct inode *inode, struct file *file) { /* 获取信号量 每个应用程序打开一个设备就会获取信号量,这样别的app打开的时候就会进入休眠状态*/ down(&button_lock); /* GPF1、GPF4、GPF2、GPF0为中断引脚 */ request_irq(IRQ_EINT1, buttons_irq, IRQT_BOTHEDGE, "K1", &pins_desc[0]); request_irq(IRQ_EINT4, buttons_irq, IRQT_BOTHEDGE, "K2", &pins_desc[1]); request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "K3", &pins_desc[2]); request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "K4", &pins_desc[3]); return 0; } ssize_t sixth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) { if (size != 1) return -EINVAL; /* 如果没有按键动作, 休眠 */ wait_event_interruptible(button_waitq, ev_press); /* 如果有按键动作, 返回键值 */ copy_to_user(buf, &key_val, 1); ev_press = 0; return 1; } int sixth_drv_close(struct inode *inode, struct file *file) { free_irq(IRQ_EINT1, &pins_desc[0]); free_irq(IRQ_EINT4, &pins_desc[1]); free_irq(IRQ_EINT2, &pins_desc[2]); free_irq(IRQ_EINT0, &pins_desc[3]); up(&button_lock);//在第一个应用程序关闭设备的时候,一定要释放信号量,从而使第2个应用程序可以打开它 return 0; } static unsigned sixth_drv_poll(struct file *file, poll_table *wait) { unsigned int mask = 0; poll_wait(file, &button_waitq, wait); // 不会立即休眠 if (ev_press) mask |= POLLIN | POLLRDNORM; return mask; } static int sixth_drv_fasync (int fd, struct file *filp, int on) { printk("driver: sixth_drv_fasync\n"); return fasync_helper (fd, filp, on, &button_async); } static struct file_operations sencod_drv_fops = { .owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */ .open = sixth_drv_open, .read = sixth_drv_read, .release = sixth_drv_close, .poll = sixth_drv_poll, .fasync = sixth_drv_fasync, }; int major; static int sixth_drv_init(void) { major = register_chrdev(0, "sixth_drv", &sencod_drv_fops); sixthdrv_class = class_create(THIS_MODULE, "sixth_drv"); sixthdrv_class_dev = class_device_create(sixthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */ // gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16); // gpfdat = gpfcon + 1; return 0; } static void sixth_drv_exit(void) { unregister_chrdev(major, "sixth_drv"); class_device_unregister(sixthdrv_class_dev); class_destroy(sixthdrv_class); // iounmap(gpfcon); return 0; } module_init(sixth_drv_init); module_exit(sixth_drv_exit); MODULE_LICENSE("GPL");阻塞:
比如:读取一个按键值,如果当前没有读取到的话继续去读,表示阻塞,如果没有读到立即返回的话,就表示非阻塞
那么如何区分阻塞和非阻塞呢?
在应用程序中的open函数中加入O_NONBLOCK标志的话就表示非阻塞操作,没有这个标志的话,默认的情况是阻塞的操作如下所示:
fd = open("...", O_RDWR | O_NONBLOCK);
在驱动中是通过:
file->f_flags & O_NONBLOCK
来判断是否是阻塞操作的。
下面看下例子:
#include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/irq.h> #include <asm/uaccess.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/arch/regs-gpio.h> #include <asm/hardware.h> #include <linux/poll.h> static struct class *sixthdrv_class; static struct class_device *sixthdrv_class_dev; //volatile unsigned long *gpfcon; //volatile unsigned long *gpfdat; static DECLARE_WAIT_QUEUE_HEAD(button_waitq); /* 中断事件标志, 中断服务程序将它置1,sixth_drv_read将它清0 */ static volatile int ev_press = 0; static struct fasync_struct *button_async; struct pin_desc{ unsigned int pin; unsigned int key_val; }; /* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */ /* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */ static unsigned char key_val; /* * K1,K2,K3,K4对应GPF1、GPF4、GPF2、GPF0 */ struct pin_desc pins_desc[4] = { {S3C2410_GPF1, 0x01}, {S3C2410_GPF4, 0x02}, {S3C2410_GPF2, 0x03}, {S3C2410_GPF0, 0x04}, }; static DECLARE_MUTEX(button_lock); //定义互斥锁 /* * 确定按键值 */ static irqreturn_t buttons_irq(int irq, void *dev_id) { struct pin_desc * pindesc = (struct pin_desc *)dev_id; unsigned int pinval; pinval = s3c2410_gpio_getpin(pindesc->pin); if (pinval) { /* 松开 */ key_val = 0x80 | pindesc->key_val; } else { /* 按下 */ key_val = pindesc->key_val; } ev_press = 1; /* 表示中断发生了 */ wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */ kill_fasync (&button_async, SIGIO, POLL_IN); return IRQ_RETVAL(IRQ_HANDLED); } static int sixth_drv_open(struct inode *inode, struct file *file) { if (file->f_flags & O_NONBLOCK)//根据file->f_flags来判断是否在应用程序中设置了O_NONBLOCK标志,如果设置了则进行里面的动作 { if (down_trylock(&button_lock))//试着去获取信号量,如果没有获取到,则返回BUSY状态 return -EBUSY; } else { /* 获取信号量 */ down(&button_lock);//如果app中没有设置O_NONBLOCK标志,则开始获取信号量,进入阻塞状态 } /* GPF1、GPF4、GPF2、GPF0为中断引脚 */ request_irq(IRQ_EINT1, buttons_irq, IRQT_BOTHEDGE, "K1", &pins_desc[0]); request_irq(IRQ_EINT4, buttons_irq, IRQT_BOTHEDGE, "K2", &pins_desc[1]); request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "K3", &pins_desc[2]); request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "K4", &pins_desc[3]); return 0; } ssize_t sixth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) { if (size != 1) return -EINVAL; if (file->f_flags & O_NONBLOCK)//读操作也是一样,如果设置了非阻塞然后判断按键是否按下,没有按下立刻返回AGAIN的错误信息 { if (!ev_press) return -EAGAIN; } else { /* 如果没有按键动作, 休眠 */ wait_event_interruptible(button_waitq, ev_press);//设置阻塞的情况,则进入休眠 } /* 如果有按键动作, 返回键值 */ copy_to_user(buf, &key_val, 1); ev_press = 0; return 1; } int sixth_drv_close(struct inode *inode, struct file *file) { free_irq(IRQ_EINT1, &pins_desc[0]); free_irq(IRQ_EINT4, &pins_desc[1]); free_irq(IRQ_EINT2, &pins_desc[2]); free_irq(IRQ_EINT0, &pins_desc[3]); up(&button_lock); return 0; } static unsigned sixth_drv_poll(struct file *file, poll_table *wait) { unsigned int mask = 0; poll_wait(file, &button_waitq, wait); // 不会立即休眠 if (ev_press) mask |= POLLIN | POLLRDNORM; return mask; } static int sixth_drv_fasync (int fd, struct file *filp, int on) { printk("driver: sixth_drv_fasync\n"); return fasync_helper (fd, filp, on, &button_async); } static struct file_operations sencod_drv_fops = { .owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */ .open = sixth_drv_open, .read = sixth_drv_read, .release = sixth_drv_close, .poll = sixth_drv_poll, .fasync = sixth_drv_fasync, }; int major; static int sixth_drv_init(void) { major = register_chrdev(0, "sixth_drv", &sencod_drv_fops);
sixthdrv_class = class_create(THIS_MODULE, "sixth_drv");
sixthdrv_class_dev = class_device_create(sixthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */ // gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16); // gpfdat = gpfcon + 1; return 0; } static void sixth_drv_exit(void) { unregister_chrdev(major, "sixth_drv"); class_device_unregister(sixthdrv_class_dev); class_destroy(sixthdrv_class); // iounmap(gpfcon); return 0; } module_init(sixth_drv_init); module_exit(sixth_drv_exit); MODULE_LICENSE("GPL");