SparkContext的初始化(仲篇)——SparkUI、环境变量及调度

《深入理解Spark:核心思想与源码分析》一书前言的内容请看链接《深入理解SPARK:核心思想与源码分析》一书正式出版上市

《深入理解Spark:核心思想与源码分析》一书第一章的内容请看链接《第1章 环境准备》

《深入理解Spark:核心思想与源码分析》一书第二章的内容请看链接《第2章 Spark设计理念与基本架构》

由于本书的第3章内容较多,所以打算分别开辟四篇随笔分别展现。

《深入理解Spark:核心思想与源码分析》一书第三章第一部分的内容请看链接《深入理解Spark:核心思想与源码分析》——SparkContext的初始化(伯篇)》

本文展现第3章第一部分的内容:


3.4 SPARKUI详解

  任何系统都需要提供监控功能,用浏览器能访问具有样式及布局,并提供丰富监控数据的页面无疑是一种简单、高效的方式。SparkUI就是这样的服务,它的构成如图3-1所示。在大型分布式系统中,采用事件监听机制是最常见的。为什么要使用事件监听机制?假如SparkUI采用Scala的函数调用方式,那么随着整个集群规模的增加,对函数的调用会越来越多,最终会受到Driver所在JVM的线程数量限制而影响监控数据的更新,甚至出现监控数据无法及时显示给用户的情况。由于函数调用多数情况下是同步调用,这就导致线程被阻塞,在分布式环境中,还可能因为网络问题,导致线程被长时间占用。将函数调用更换为发送事件,事件的处理是异步的,当前线程可以继续执行后续逻辑,线程池中的线程还可以被重用,这样整个系统的并发度会大大增加。发送的事件会存入缓存,由定时调度器取出后,分配给监听此事件的监听器对监控数据进行更新。

SparkContext的初始化(仲篇)——SparkUI、环境变量及调度_第1张图片

图3-1        SparkUI架构

  我们先将图3-1中的各个组件作简单介绍:DAGScheduler是主要的产生各类SparkListenerEvent的源头,它将各种SparkListenerEvent发送到listenerBus的事件队列中,listenerBus通过定时器将SparkListenerEvent事件匹配到具体的SparkListener,改变SparkListener中的统计监控数据,最终由SparkUI的界面展示。从图3-1中还可以看到Spark里定义了很多监听器SparkListener的实现,包括JobProgressListener、EnviromentListener、StorageListener、ExecutorsListener几种,它们的类继承体系如图3-2所示。

图3-2        SparkListener继承体系

3.4.1 listenerBus详解

  listenerBus的类型是LiveListenerBus,LiveListenerBus实现了监听器模型,通过监听事件触发对各种监听器监听状态信息的修改,达到UI界面的数据刷新效果。LiveListenerBus由以下部分组成:

 事件阻塞队列:类型为LinkedBlockingQueue[SparkListenerEvent],固定大小是10000;

 监听器数组:类型为ArrayBuffer[SparkListener],存放各类监听器SparkListener。SparkListener是;

 事件匹配监听器的线程:此Thread不断拉取LinkedBlockingQueue中的事情,遍历监听器,调用监听器的方法。任何事件都会在LinkedBlockingQueue中存在一段时间,然后Thread处理了此事件后,会将其清除。因此使用listener bus这个名字再合适不过了,到站就下车。listenerBus的实现,见代码清单3-15。

代码清单3-15         LiveListenerBus的事件处理实现

private val EVENT_QUEUE_CAPACITY = 10000
  private val eventQueue = new LinkedBlockingQueue[SparkListenerEvent](EVENT_QUEUE_CAPACITY)
  private var queueFullErrorMessageLogged = false
  private var started = false
  // A counter that represents the number of events produced and consumed in the queue
  private val eventLock = new Semaphore(0)

  private val listenerThread = new Thread("SparkListenerBus") {
    setDaemon(true)
    override def run(): Unit = Utils.logUncaughtExceptions {
      while (true) {
        eventLock.acquire()
        // Atomically remove and process this event
        LiveListenerBus.this.synchronized {
          val event = eventQueue.poll
          if (event == SparkListenerShutdown) {
            // Get out of the while loop and shutdown the daemon thread
            return
          }
          Option(event).foreach(postToAll)
        }
      }
    }
  }

  def start() {
    if (started) {
      throw new IllegalStateException("Listener bus already started!")
    }
    listenerThread.start()
    started = true
  }
def post(event: SparkListenerEvent) {
    val eventAdded = eventQueue.offer(event)
    if (eventAdded) {
      eventLock.release()
    } else {
      logQueueFullErrorMessage()
    }
  }
  
  def listenerThreadIsAlive: Boolean = synchronized { listenerThread.isAlive }

  def queueIsEmpty: Boolean = synchronized { eventQueue.isEmpty }

  def stop() {
    if (!started) {
      throw new IllegalStateException("Attempted to stop a listener bus that has not yet started!")
    }
    post(SparkListenerShutdown)
    listenerThread.join()
  }

LiveListenerBus中调用的postToAll方法实际定义在父类SparkListenerBus中,如代码清单3-16所示。

代码清单3-16         SparkListenerBus中的监听器调用

  protected val sparkListeners = new ArrayBuffer[SparkListener]
    with mutable.SynchronizedBuffer[SparkListener]

  def addListener(listener: SparkListener) {
    sparkListeners += listener
  }

  def postToAll(event: SparkListenerEvent) {
    event match {
      case stageSubmitted: SparkListenerStageSubmitted =>
        foreachListener(_.onStageSubmitted(stageSubmitted))
      case stageCompleted: SparkListenerStageCompleted =>
        foreachListener(_.onStageCompleted(stageCompleted))
      case jobStart: SparkListenerJobStart =>
        foreachListener(_.onJobStart(jobStart))
      case jobEnd: SparkListenerJobEnd =>
        foreachListener(_.onJobEnd(jobEnd))
      case taskStart: SparkListenerTaskStart =>
        foreachListener(_.onTaskStart(taskStart))
      case taskGettingResult: SparkListenerTaskGettingResult =>
        foreachListener(_.onTaskGettingResult(taskGettingResult))
      case taskEnd: SparkListenerTaskEnd =>
        foreachListener(_.onTaskEnd(taskEnd))
      case environmentUpdate: SparkListenerEnvironmentUpdate =>
        foreachListener(_.onEnvironmentUpdate(environmentUpdate))
      case blockManagerAdded: SparkListenerBlockManagerAdded =>
        foreachListener(_.onBlockManagerAdded(blockManagerAdded))
      case blockManagerRemoved: SparkListenerBlockManagerRemoved =>
        foreachListener(_.onBlockManagerRemoved(blockManagerRemoved))
      case unpersistRDD: SparkListenerUnpersistRDD =>
        foreachListener(_.onUnpersistRDD(unpersistRDD))
      case applicationStart: SparkListenerApplicationStart =>
        foreachListener(_.onApplicationStart(applicationStart))
      case applicationEnd: SparkListenerApplicationEnd =>
        foreachListener(_.onApplicationEnd(applicationEnd))
      case metricsUpdate: SparkListenerExecutorMetricsUpdate =>
        foreachListener(_.onExecutorMetricsUpdate(metricsUpdate))
      case SparkListenerShutdown =>
    }
  }

  private def foreachListener(f: SparkListener => Unit): Unit = {
    sparkListeners.foreach { listener =>
      try {
        f(listener)
      } catch {
        case e: Exception =>
          logError(s"Listener ${Utils.getFormattedClassName(listener)} threw an exception", e)
      }
    }
  }

3.4.2 构造JobProgressListener

  我们以JobProgressListener为例来讲解SparkListener。JobProgressListener是SparkContext中一个重要的组成部分,通过监听listenerBus中的事件更新任务进度。SparkStatusTracker和SparkUI实际上也是通过JobProgressListener来实现任务状态跟踪的。创建JobProgressListener的代码如下。
  private[spark] val jobProgressListener = new JobProgressListener(conf)
  listenerBus.addListener(jobProgressListener)

  val statusTracker = new SparkStatusTracker(this)

JobProgressListener的作用是通过HashMap、ListBuffer等数据结构存储JobId及对应的JobUIData信息,并按照激活、完成、失败等job状态统计。对于StageId、StageInfo等信息按照激活、完成、忽略、失败等stage状态统计。并且存储StageId与JobId的一对多关系。这些统计信息最终会被JobPage和StagePage等页面访问和渲染。JobProgressListener的数据结构见代码清单3-17。

代码清单3-17         JobProgressListener维护的信息

class JobProgressListener(conf: SparkConf) extends SparkListener with Logging {
  import JobProgressListener._

  type JobId = Int
  type StageId = Int
  type StageAttemptId = Int
  type PoolName = String
  type ExecutorId = String

  // Jobs:
  val activeJobs = new HashMap[JobId, JobUIData]
  val completedJobs = ListBuffer[JobUIData]()
  val failedJobs = ListBuffer[JobUIData]()
  val jobIdToData = new HashMap[JobId, JobUIData]

  // Stages:
  val activeStages = new HashMap[StageId, StageInfo]
  val completedStages = ListBuffer[StageInfo]()
  val skippedStages = ListBuffer[StageInfo]()
  val failedStages = ListBuffer[StageInfo]()
  val stageIdToData = new HashMap[(StageId, StageAttemptId), StageUIData]
  val stageIdToInfo = new HashMap[StageId, StageInfo]
  val stageIdToActiveJobIds = new HashMap[StageId, HashSet[JobId]]
  val poolToActiveStages = HashMap[PoolName, HashMap[StageId, StageInfo]]()
  var numCompletedStages = 0 // 总共完成的Stage数量
  var numFailedStages = 0 / 总共失败的Stage数量

  // Misc:
  val executorIdToBlockManagerId = HashMap[ExecutorId, BlockManagerId]()
  def blockManagerIds = executorIdToBlockManagerId.values.toSeq

  var schedulingMode: Option[SchedulingMode] = None

  // number of non-active jobs and stages (there is no limit for active jobs and stages):
  val retainedStages = conf.getInt("spark.ui.retainedStages", DEFAULT_RETAINED_STAGES)
  val retainedJobs = conf.getInt("spark.ui.retainedJobs", DEFAULT_RETAINED_JOBS) 
JobProgressListener 实现了onJobStart、onJobEnd、onStageCompleted、onStageSubmitted、onTaskStart、onTaskEnd等方法,这些方法正是在listenerBus的驱动下,改变JobProgressListener中的各种Job、Stage相关的数据。

3.4.3 SparkUI的创建与初始化

创建SparkUI的实现,见代码清单3-18。

代码清单3-18         SparkUI的声明

  private[spark] val ui: Option[SparkUI] =
    if (conf.getBoolean("spark.ui.enabled", true)) {
      Some(SparkUI.createLiveUI(this, conf, listenerBus, jobProgressListener,
        env.securityManager,appName))
    } else {
      None
    }

  ui.foreach(_.bind())

可以看到如果不需要提供SparkUI服务,可以将属性spark.ui.enabled修改为false。其中createLiveUI实际是调用了create方法,见代码清单3-19。

代码清单3-19         SparkUI的创建

  def createLiveUI(
      sc: SparkContext,
      conf: SparkConf,
      listenerBus: SparkListenerBus,
      jobProgressListener: JobProgressListener,
      securityManager: SecurityManager,
      appName: String): SparkUI =  {
    create(Some(sc), conf, listenerBus, securityManager, appName,
      jobProgressListener = Some(jobProgressListener))
  }


在create方法里,除了JobProgressListener是外部传入的之外,又增加了一些SparkListener。例如,用于对JVM参数、Spark属性、Java系统属性、classpath等进行监控的EnvironmentListener;用于维护executor的存储状态的StorageStatusListener;用于准备将executor的信息展示在ExecutorsTab的ExecutorsListener;用于准备将executor相关存储信息展示在BlockManagerUI的StorageListener等。最后创建SparkUI,参见代码清单3-20。

代码清单3-20         create方法的实现

  private def create(
      sc: Option[SparkContext],
      conf: SparkConf,
      listenerBus: SparkListenerBus,
      securityManager: SecurityManager,
      appName: String,
      basePath: String = "",
      jobProgressListener: Option[JobProgressListener] = None): SparkUI = {

    val _jobProgressListener: JobProgressListener = jobProgressListener.getOrElse {
      val listener = new JobProgressListener(conf)
      listenerBus.addListener(listener)
      listener
    }

    val environmentListener = new EnvironmentListener
    val storageStatusListener = new StorageStatusListener
    val executorsListener = new ExecutorsListener(storageStatusListener)
    val storageListener = new StorageListener(storageStatusListener)

    listenerBus.addListener(environmentListener)
    listenerBus.addListener(storageStatusListener)
    listenerBus.addListener(executorsListener)
    listenerBus.addListener(storageListener)

    new SparkUI(sc, conf, securityManager, environmentListener, storageStatusListener,
      executorsListener, _jobProgressListener, storageListener, appName, basePath)
  }

SparkUI服务默认是可以被杀掉的,通过修改属性spark.ui.killEnabled为false可以保证不被杀死。initialize方法,会组织前端页面各个Tab和Page的展示及布局,参见代码清单3-21。

代码清单3-21         SparkUI的初始化

private[spark] class SparkUI private (
    val sc: Option[SparkContext],
    val conf: SparkConf,
    val securityManager: SecurityManager,
    val environmentListener: EnvironmentListener,
    val storageStatusListener: StorageStatusListener,
    val executorsListener: ExecutorsListener,
    val jobProgressListener: JobProgressListener,
    val storageListener: StorageListener,
    var appName: String,
    val basePath: String)
  extends WebUI(securityManager, SparkUI.getUIPort(conf), conf, basePath, "SparkUI")
  with Logging {

  val killEnabled = sc.map(_.conf.getBoolean("spark.ui.killEnabled", true)).getOrElse(false)

  /** Initialize all components of the server. */
  def initialize() {
    attachTab(new JobsTab(this))
    val stagesTab = new StagesTab(this)
    attachTab(stagesTab)
    attachTab(new StorageTab(this))
    attachTab(new EnvironmentTab(this))
    attachTab(new ExecutorsTab(this))
    attachHandler(createStaticHandler(SparkUI.STATIC_RESOURCE_DIR, "/static"))
    attachHandler(createRedirectHandler("/", "/jobs", basePath = basePath))
    attachHandler(
      createRedirectHandler("/stages/stage/kill", "/stages", stagesTab.handleKillRequest))
  }
  initialize()

3.4.4 SparkUI的页面布局及展示

  SparkUI究竟是如何实现页面布局及展示的?JobsTab展示所有Job的进度、状态信息,这里我们以它为例来说明。JobsTab会复用SparkUI的killEnabled、SparkContext、jobProgressListener,包括AllJobsPage和JobPage两个页面,见代码清单3-22。

代码清单3-22         JobsTab的实现

private[ui] class JobsTab(parent: SparkUI) extends SparkUITab(parent, "jobs") {
  val sc = parent.sc
  val killEnabled = parent.killEnabled
  def isFairScheduler = listener.schedulingMode.exists(_ == SchedulingMode.FAIR)
  val listener = parent.jobProgressListener

  attachPage(new AllJobsPage(this))
  attachPage(new JobPage(this))
} 

AllJobsPage由render方法渲染,利用jobProgressListener中的统计监控数据生成激活、完成、失败等状态的Job摘要信息,并调用jobsTable方法生成表格等html元素,最终使用UIUtils的headerSparkPage封装好css、js、header及页面布局等,见代码清单3-23。

代码清单3-23         AllJobsPage的实现

def render(request: HttpServletRequest): Seq[Node] = {
    listener.synchronized {
      val activeJobs = listener.activeJobs.values.toSeq
      val completedJobs = listener.completedJobs.reverse.toSeq
      val failedJobs = listener.failedJobs.reverse.toSeq
      val now = System.currentTimeMillis

      val activeJobsTable =
        jobsTable(activeJobs.sortBy(_.startTime.getOrElse(-1L)).reverse)
      val completedJobsTable =
        jobsTable(completedJobs.sortBy(_.endTime.getOrElse(-1L)).reverse)
      val failedJobsTable =
        jobsTable(failedJobs.sortBy(_.endTime.getOrElse(-1L)).reverse)

      val summary: NodeSeq =
        <div>
          <ul class="unstyled">
            {if (startTime.isDefined) {
              // Total duration is not meaningful unless the UI is live
              <li>
                <strong>Total Duration: </strong>
                {UIUtils.formatDuration(now - startTime.get)}
              </li>
            }}
            <li>
              <strong>Scheduling Mode: </strong>
              {listener.schedulingMode.map(_.toString).getOrElse("Unknown")}
            </li>
            <li>
              <a href="#active"><strong>Active Jobs:</strong></a>
              {activeJobs.size}
            </li>
            <li>
              <a href="#completed"><strong>Completed Jobs:</strong></a>
              {completedJobs.size}
            </li>
            <li>
              <a href="#failed"><strong>Failed Jobs:</strong></a>
              {failedJobs.size}
            </li>
          </ul>
        </div>

jobsTable用来生成表格数据,见代码清单3-24。 

代码清单3-24         jobsTable处理表格的实现

private def jobsTable(jobs: Seq[JobUIData]): Seq[Node] = {
    val someJobHasJobGroup = jobs.exists(_.jobGroup.isDefined)

    val columns: Seq[Node] = {
      <th>{if (someJobHasJobGroup) "Job Id (Job Group)" else "Job Id"}</th>
      <th>Description</th>
      <th>Submitted</th>
      <th>Duration</th>
      <th class="sorttable_nosort">Stages: Succeeded/Total</th>
      <th class="sorttable_nosort">Tasks (for all stages): Succeeded/Total</th>
    }

    <table class="table table-bordered table-striped table-condensed sortable">
      <thead>{columns}</thead>
      <tbody>
        {jobs.map(makeRow)}
      </tbody>
    </table>
  }

表格中每行数据又是通过makeRow方法渲染的,参见代码清单3-25。

代码清单3-25         生成表格中的行

def makeRow(job: JobUIData): Seq[Node] = {
      val lastStageInfo = Option(job.stageIds)
        .filter(_.nonEmpty)
        .flatMap { ids => listener.stageIdToInfo.get(ids.max) }
      val lastStageData = lastStageInfo.flatMap { s =>
        listener.stageIdToData.get((s.stageId, s.attemptId))
      }
      val isComplete = job.status == JobExecutionStatus.SUCCEEDED
      val lastStageName = lastStageInfo.map(_.name).getOrElse("(Unknown Stage Name)")
      val lastStageDescription = lastStageData.flatMap(_.description).getOrElse("")
      val duration: Option[Long] = {
        job.startTime.map { start =>
          val end = job.endTime.getOrElse(System.currentTimeMillis())
          end - start
        }
      }
      val formattedDuration = duration.map(d => UIUtils.formatDuration(d)).getOrElse("Unknown")
      val formattedSubmissionTime = job.startTime.map(UIUtils.formatDate).getOrElse("Unknown")
      val detailUrl =
        "%s/jobs/job?id=%s".format(UIUtils.prependBaseUri(parent.basePath), job.jobId)
      <tr>
        <td sorttable_customkey={job.jobId.toString}>
          {job.jobId} {job.jobGroup.map(id => s"($id)").getOrElse("")}
        </td>
        <td>
          <div><em>{lastStageDescription}</em></div>
          <a href={detailUrl}>{lastStageName}</a>
        </td>
        <td sorttable_customkey={job.startTime.getOrElse(-1).toString}>
          {formattedSubmissionTime}
        </td>
        <td sorttable_customkey={duration.getOrElse(-1).toString}>{formattedDuration}</td>
        <td class="stage-progress-cell">
          {job.completedStageIndices.size}/{job.stageIds.size - job.numSkippedStages}
          {if (job.numFailedStages > 0) s"(${job.numFailedStages} failed)"}
          {if (job.numSkippedStages > 0) s"(${job.numSkippedStages} skipped)"}
        </td>
        <td class="progress-cell">
          {UIUtils.makeProgressBar(started = job.numActiveTasks, completed = job.numCompletedTasks,
           failed = job.numFailedTasks, skipped = job.numSkippedTasks,
           total = job.numTasks - job.numSkippedTasks)}
        </td>
      </tr>
    }

代码清单3-22中的attachPage方法存在于JobsTab的父类WebUITab中,WebUITab维护有ArrayBuffer[WebUIPage]的数据结构,AllJobsPage和JobPage将被放入此ArrayBuffer中,参见代码清单3-26。

代码清单3-26         WebUITab的实现

private[spark] abstract class WebUITab(parent: WebUI, val prefix: String) {
  val pages = ArrayBuffer[WebUIPage]()
  val name = prefix.capitalize

  /** Attach a page to this tab. This prepends the page's prefix with the tab's own prefix. */
  def attachPage(page: WebUIPage) {
    page.prefix = (prefix + "/" + page.prefix).stripSuffix("/")
    pages += page
  }

  /** Get a list of header tabs from the parent UI. */
  def headerTabs: Seq[WebUITab] = parent.getTabs

  def basePath: String = parent.getBasePath
}

JobsTab创建之后,将被attachTab方法加入SparkUI的ArrayBuffer[WebUITab]中,并且通过attachPage方法,给每一个page生成org.eclipse.jetty.servlet.ServletContextHandler,最后调用attachHandler方法将ServletContextHandler绑定到SparkUI,即加入到handlers :ArrayBuffer[ServletContextHandler]和样例类ServerInfo样例类的rootHandler(ContextHandlerCollection)中。SparkUI继承自WebUI,attachTab方法在WebUI中实现,参见代码清单3-27。

代码清单3-27         WebUI的实现

private[spark] abstract class WebUI( securityManager: SecurityManager, port: Int,
    conf: SparkConf, basePath: String = "", name: String = "") extends Logging {

  protected val tabs = ArrayBuffer[WebUITab]()
  protected val handlers = ArrayBuffer[ServletContextHandler]()
  protected var serverInfo: Option[ServerInfo] = None
  protected val localHostName = Utils.localHostName()
  protected val publicHostName = Option(System.getenv("SPARK_PUBLIC_DNS")).getOrElse(localHostName)
  private val className = Utils.getFormattedClassName(this)

  def getBasePath: String = basePath
  def getTabs: Seq[WebUITab] = tabs.toSeq
  def getHandlers: Seq[ServletContextHandler] = handlers.toSeq
  def getSecurityManager: SecurityManager = securityManager

  /** Attach a tab to this UI, along with all of its attached pages. */
  def attachTab(tab: WebUITab) {
    tab.pages.foreach(attachPage)
    tabs += tab
  }

  /** Attach a page to this UI. */
  def attachPage(page: WebUIPage) {
    val pagePath = "/" + page.prefix
    attachHandler(createServletHandler(pagePath,
      (request: HttpServletRequest) => page.render(request), securityManager, basePath))
    attachHandler(createServletHandler(pagePath.stripSuffix("/") + "/json",
      (request: HttpServletRequest) => page.renderJson(request), securityManager, basePath))
  }

  /** Attach a handler to this UI. */
  def attachHandler(handler: ServletContextHandler) {
    handlers += handler
    serverInfo.foreach { info =>
      info.rootHandler.addHandler(handler)
      if (!handler.isStarted) {
        handler.start()
      }
    }
  }

由于代码清单3-27所在的类中使用import org.apache.spark.ui.JettyUtils._导入了JettyUtils的静态方法,所以createServletHandler方法实际是JettyUtils 的静态方法createServletHandler。createServletHandler实际创建了javax.servlet.http.HttpServlet的匿名内部类实例,此实例实际使用(request: HttpServletRequest) => page.render(request)这个函数参数来处理请求,进而渲染页面呈现给用户。有关createServletHandler的实现,及Jetty的相关信息,请参阅附录C。

3.4.5 SparkUI启动

  SparkUI创建好后,需要调用父类WebUI的bind方法,绑定服务和端口,bind方法中主要的代码实现如下。
      serverInfo = Some(startJettyServer("0.0.0.0", port, handlers, conf, name))

JettyUtils的静态方法startJettyServer的实现请参阅附录C。最终启动了Jetty提供的服务,默认端口是4040。

3.5 HADOOP相关配置及EXECUTOR环境变量

3.5.1 Hadoop相关配置信息

  默认情况下,Spark使用HDFS作为分布式文件系统,所以需要获取Hadoop相关配置信息的代码如下。
  val hadoopConfiguration = SparkHadoopUtil.get.newConfiguration(conf)

  获取的配置信息包括:

 Amazon S3文件系统AccessKeyId和SecretAccessKey加载到Hadoop的Configuration;

 将SparkConf中所有spark.hadoop.开头的属性都复制到Hadoop的Configuration;

 将SparkConf的属性spark.buffer.size复制为Hadoop的Configuration的配置io.file.buffer.size。

 注意:如果指定了SPARK_YARN_MODE属性,则会使用YarnSparkHadoopUtil,否则默认为SparkHadoopUtil。

3.5.2 Executor环境变量

  对Executor的环境变量的处理,参见代码清单3-28。executorEnvs 包含的环境变量将会在7.2.2节中介绍的注册应用的过程中发送给Master,Master给Worker发送调度后,Worker最终使用executorEnvs提供的信息启动Executor。可以通过配置spark.executor.memory指定Executor占用的内存大小,也可以配置系统变量SPARK_EXECUTOR_MEMORY或者SPARK_MEM对其大小进行设置。

代码清单3-28         Executor 环境变量的处理

private[spark] val executorMemory = conf.getOption("spark.executor.memory")
    .orElse(Option(System.getenv("SPARK_EXECUTOR_MEMORY")))
    .orElse(Option(System.getenv("SPARK_MEM")).map(warnSparkMem))
    .map(Utils.memoryStringToMb)
    .getOrElse(512)

  // Environment variables to pass to our executors.
  private[spark] val executorEnvs = HashMap[String, String]()

  for { (envKey, propKey) <- Seq(("SPARK_TESTING", "spark.testing"))
    value <- Option(System.getenv(envKey)).orElse(Option(System.getProperty(propKey)))} {
    executorEnvs(envKey) = value
  }
  Option(System.getenv("SPARK_PREPEND_CLASSES")).foreach { v =>
    executorEnvs("SPARK_PREPEND_CLASSES") = v
  }
  // The Mesos scheduler backend relies on this environment variable to set executor memory.
  executorEnvs("SPARK_EXECUTOR_MEMORY") = executorMemory + "m"
  executorEnvs ++= conf.getExecutorEnv

  // Set SPARK_USER for user who is running SparkContext.
  val sparkUser = Option {
    Option(System.getenv("SPARK_USER")).getOrElse(System.getProperty("user.name"))
  }.getOrElse {
    SparkContext.SPARK_UNKNOWN_USER
  }
  executorEnvs("SPARK_USER") = sparkUser 


3.6 创建任务调度器TASKSCHEDULER

  TaskScheduler也是SparkContext的重要组成部分,负责任务的提交,并且请求集群管理器对任务调度。TaskScheduler也可以看做任务调度的客户端。创建TaskScheduler的代码如下。

  private[spark] var (schedulerBackend, taskScheduler) =
    SparkContext.createTaskScheduler(this, master)
createTaskScheduler方法会根据master的配置匹配部署模式,创建TaskSchedulerImpl,并生成不同的SchedulerBackend。本章为了使读者更容易理解Spark的初始化流程,故以local模式为例,其余模式将在第6章详解。master匹配local模式的代码如下。
    master match {
      case "local" =>
        val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true)
        val backend = new LocalBackend(scheduler, 1)
        scheduler.initialize(backend)
        (backend, scheduler)

3.6.1 创建TaskSchedulerImpl

  TaskSchedulerImpl的构造过程如下:1) 从SparkConf中读取配置信息,包括每个任务分配的CPU数、调度模式(调度模式有FAIR和FIFO两种,默认为FIFO,可以修改属性spark.scheduler.mode来改变)等。2) 创建TaskResultGetter,它的作用是通过线程池(Executors.newFixedThreadPool创建的,默认4个线程,线程名字以task-result-getter开头,线程工厂默认是Executors.defaultThreadFactory),对slave发送的task的执行结果进行处理。TaskSchedulerImpl的主要组成,见代码清单3-29。

代码清单3-29         TaskSchedulerImpl的实现

  var dagScheduler: DAGScheduler = null
  var backend: SchedulerBackend = null
  val mapOutputTracker = SparkEnv.get.mapOutputTracker
  var schedulableBuilder: SchedulableBuilder = null
  var rootPool: Pool = null
  // default scheduler is FIFO
  private val schedulingModeConf = conf.get("spark.scheduler.mode", "FIFO")
  val schedulingMode: SchedulingMode = try {
    SchedulingMode.withName(schedulingModeConf.toUpperCase)
  } catch {
    case e: java.util.NoSuchElementException =>
      throw new SparkException(s"Unrecognized spark.scheduler.mode: $schedulingModeConf")
  }

  // This is a var so that we can reset it for testing purposes.
  private[spark] var taskResultGetter = new TaskResultGetter(sc.env, this)

TaskSchedulerImpl的调度模式有FAIR和FIFO两种。任务的最终调度实际都是落实到接口SchedulerBackend的具体实现上的。为方便分析,我们先来看看local模式中SchedulerBackend的实现LocalBackend。LocalBackend依赖于LocalActor与ActorSystem进行消息通信。LocalBackend参见代码清单3-30。

代码清单3-30         LocalBackend的实现

private[spark] class LocalBackend(scheduler: TaskSchedulerImpl, val totalCores: Int)
  extends SchedulerBackend with ExecutorBackend {

  private val appId = "local-" + System.currentTimeMillis
  var localActor: ActorRef = null

  override def start() {
    localActor = SparkEnv.get.actorSystem.actorOf(
      Props(new LocalActor(scheduler, this, totalCores)),
      "LocalBackendActor")
  }

  override def stop() {
    localActor ! StopExecutor
  }

  override def reviveOffers() {
    localActor ! ReviveOffers
  }

  override def defaultParallelism() =
    scheduler.conf.getInt("spark.default.parallelism", totalCores)

  override def killTask(taskId: Long, executorId: String, interruptThread: Boolean) {
    localActor ! KillTask(taskId, interruptThread)
  }

  override def statusUpdate(taskId: Long, state: TaskState, serializedData: ByteBuffer) {
    localActor ! StatusUpdate(taskId, state, serializedData)
  }

  override def applicationId(): String = appId
} 

3.6.2 TaskSchedulerImpl的初始化

  创建完TaskSchedulerImpl和LocalBackend后,对TaskSchedulerImpl调用方法initialize进行初始化。初始化过程如下:

1) 使TaskSchedulerImpl持有LocalBackend的引用。

2) 创建Pool,Pool中缓存了调度队列、调度算法及TaskSetManager集合等信息。

3) 创建FIFOSchedulableBuilder,FIFOSchedulableBuilder用来操作Pool中的调度队列。

Initialize方法的实现见代码清单3-31。

代码清单3-31         TaskSchedulerImpl的初始化

def initialize(backend: SchedulerBackend) {
    this.backend = backend
    rootPool = new Pool("", schedulingMode, 0, 0)
    schedulableBuilder = {
      schedulingMode match {
        case SchedulingMode.FIFO =>
          new FIFOSchedulableBuilder(rootPool)
        case SchedulingMode.FAIR =>
          new FairSchedulableBuilder(rootPool, conf)
      }
    }
    schedulableBuilder.buildPools()
  } 

3.7 创建和启动DAGSCHEDULER

  DAGScheduler主要用于在任务正式交给TaskSchedulerImpl提交之前做一些准备工作,包括:创建Job,将DAG中的RDD划分到不同的Stage、提交Stage,等等。创建DAGScheduler的代码如下。

@volatile private[spark] var dagScheduler: DAGScheduler = _
    dagScheduler = new DAGScheduler(this)

DAGScheduler的数据结构主要维护jobId和stageId的关系、Stage、ActiveJob,以及缓存的RDD的partitions的位置信息,见代码清单3-32。

代码清单3-32         DAGScheduler维护的数据结构

  private[scheduler] val nextJobId = new AtomicInteger(0)
  private[scheduler] def numTotalJobs: Int = nextJobId.get()
  private val nextStageId = new AtomicInteger(0)

  private[scheduler] val jobIdToStageIds = new HashMap[Int, HashSet[Int]]
  private[scheduler] val stageIdToStage = new HashMap[Int, Stage]
  private[scheduler] val shuffleToMapStage = new HashMap[Int, Stage]
  private[scheduler] val jobIdToActiveJob = new HashMap[Int, ActiveJob]

  // Stages we need to run whose parents aren't done
  private[scheduler] val waitingStages = new HashSet[Stage]
  // Stages we are running right now
  private[scheduler] val runningStages = new HashSet[Stage]
  // Stages that must be resubmitted due to fetch failures
  private[scheduler] val failedStages = new HashSet[Stage]

  private[scheduler] val activeJobs = new HashSet[ActiveJob]

 // Contains the locations that each RDD's partitions are cached on
  private val cacheLocs = new HashMap[Int, Array[Seq[TaskLocation]]]
  private val failedEpoch = new HashMap[String, Long]

  private val dagSchedulerActorSupervisor =
    env.actorSystem.actorOf(Props(new DAGSchedulerActorSupervisor(this)))

  private val closureSerializer = SparkEnv.get.closureSerializer.newInstance()

在构造DAGScheduler的时候会调用initializeEventProcessActor方法创建DAGSchedulerEventProcessActor,见代码清单3-33。

代码清单3-33         DAGSchedulerEventProcessActor的初始化

  private[scheduler] var eventProcessActor: ActorRef = _
  private def initializeEventProcessActor() {
    // blocking the thread until supervisor is started, which ensures eventProcessActor is
    // not null before any job is submitted
    implicit val timeout = Timeout(30 seconds)
    val initEventActorReply =
      dagSchedulerActorSupervisor ? Props(new DAGSchedulerEventProcessActor(this))
    eventProcessActor = Await.result(initEventActorReply, timeout.duration).
      asInstanceOf[ActorRef]
  }

  initializeEventProcessActor() 

这里的DAGSchedulerActorSupervisor主要作为DAGSchedulerEventProcessActor的监管者,负责生成DAGSchedulerEventProcessActor。从代码清单3-34可以看出,DAGSchedulerActorSupervisor对于DAGSchedulerEventProcessActor采用了Akka的一对一监管策略。DAGSchedulerActorSupervisor一旦生成DAGSchedulerEventProcessActor,并注册到ActorSystem,ActorSystem就会调用DAGSchedulerEventProcessActor的preStart,taskScheduler于是就持有了dagScheduler,见代码清单3-35。从代码清单3-35我们还看到DAGSchedulerEventProcessActor所能处理的消息类型,比如handleJobSubmitted、handleBeginEvent、handleTaskCompletion等。DAGSchedulerEventProcessActor接受这些消息后会有不同的处理动作,在本章,读者只需要理解到这里即可,后面章节用到时会详细分析。

代码清单3-34         DAGSchedulerActorSupervisor的监管策略

private[scheduler] class DAGSchedulerActorSupervisor(dagScheduler: DAGScheduler)
  extends Actor with Logging {

  override val supervisorStrategy =
    OneForOneStrategy() {
      case x: Exception =>
        logError("eventProcesserActor failed; shutting down SparkContext", x)
        try {
          dagScheduler.doCancelAllJobs()
        } catch {
          case t: Throwable => logError("DAGScheduler failed to cancel all jobs.", t)
        }
        dagScheduler.sc.stop()
        Stop
    }

  def receive = {
    case p: Props => sender ! context.actorOf(p)
    case _ => logWarning("received unknown message in DAGSchedulerActorSupervisor")
  }
} 

代码清单3-35         DAGSchedulerEventProcessActor的实现
private[scheduler] class DAGSchedulerEventProcessActor(dagScheduler: DAGScheduler)
  extends Actor with Logging {
  override def preStart() {
    dagScheduler.taskScheduler.setDAGScheduler(dagScheduler)
  }
  /**
   * The main event loop of the DAG scheduler.
   */
  def receive = {
    case JobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite, listener, properties) =>
      dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite,
        listener, properties)
    case StageCancelled(stageId) =>
      dagScheduler.handleStageCancellation(stageId)
    case JobCancelled(jobId) =>
      dagScheduler.handleJobCancellation(jobId)
    case JobGroupCancelled(groupId) =>
      dagScheduler.handleJobGroupCancelled(groupId)
    case AllJobsCancelled =>
      dagScheduler.doCancelAllJobs()
    case ExecutorAdded(execId, host) =>
      dagScheduler.handleExecutorAdded(execId, host)
    case ExecutorLost(execId) =>
      dagScheduler.handleExecutorLost(execId, fetchFailed = false)
    case BeginEvent(task, taskInfo) =>
      dagScheduler.handleBeginEvent(task, taskInfo)
    case GettingResultEvent(taskInfo) =>
      dagScheduler.handleGetTaskResult(taskInfo)
    case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) =>
      dagScheduler.handleTaskCompletion(completion)
    case TaskSetFailed(taskSet, reason) =>
      dagScheduler.handleTaskSetFailed(taskSet, reason)
    case ResubmitFailedStages =>
      dagScheduler.resubmitFailedStages()
  }
  override def postStop() {
    // Cancel any active jobs in postStop hook
    dagScheduler.cleanUpAfterSchedulerStop()
  }

未完待续。。。

 

后记:自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的《深入理解Spark:核心思想与源码分析》一书现在已经正式出版上市,目前亚马逊、京东、当当、天猫等网站均有销售,欢迎感兴趣的同学购买。我开始研究源码时的Spark版本是1.2.0,经过7个多月的研究和出版社近4个月的流程,Spark自身的版本迭代也很快,如今最新已经是1.6.0。目前市面上另外2本源码研究的Spark书籍的版本分别是0.9.0版本和1.2.0版本,看来这些书的作者都与我一样,遇到了这种问题。由于研究和出版都需要时间,所以不能及时跟上Spark的脚步,还请大家见谅。但是Spark核心部分的变化相对还是很少的,如果对版本不是过于追求,依然可以选择本书。

SparkContext的初始化(仲篇)——SparkUI、环境变量及调度_第2张图片

 

京东(现有满150减50活动):http://item.jd.com/11846120.html 

当当:http://product.dangdang.com/23838168.html 

你可能感兴趣的:(源码,spark,大数据,架构,设计)