最小生成树Prim算法理解

MST(Minimum Spanning Tree,最小生成树)问题有两种通用的解法,Prim算法就是其中之一,它是从点的方面考虑构建一颗MST,大致思想是:设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V,再从集合U-V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V;以此类推,现在的集合V={a,b},再从集合U-V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,直至所有顶点全部被加入V,此时就构建出了一颗MST。因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的边。


用图示和代码说明:

初始状态:

最小生成树Prim算法理解_第1张图片

设置2个数据结构:

lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说明以i为终点的边的最小权值=0,也就是表示i点加入了MST

mst[i]:表示对应lowcost[i]的起点,即说明边<mst[i],i>是MST的一条边,当mst[i]=0表示起点i加入MST


我们假设V1是起始点,进行初始化(*代表无限大,即无通路):


lowcost[2]=6lowcost[3]=1lowcost[4]=5lowcost[5]=*,lowcost[6]=*

mst[2]=1mst[3]=1,mst[4]=1mst[5]=1,mst[6]=1(所有点默认起点是V1)


明显看出,以V3为终点的边的权值最小=1,所以边<mst[3],3>=1加入MST

最小生成树Prim算法理解_第2张图片

此时,因为点V3的加入,需要更新lowcost数组和mst数组:

lowcost[2]=5lowcost[3]=0lowcost[4]=5lowcost[5]=6,lowcost[6]=4

mst[2]=3mst[3]=0,mst[4]=1mst[5]=3,mst[6]=3


明显看出,以V6为终点的边的权值最小=4,所以边<mst[6],6>=4加入MST

最小生成树Prim算法理解_第3张图片

此时,因为点V6的加入,需要更新lowcost数组和mst数组:

lowcost[2]=5lowcost[3]=0lowcost[4]=2lowcost[5]=6lowcost[6]=0

mst[2]=3mst[3]=0,mst[4]=6mst[5]=3,mst[6]=0


明显看出,以V4为终点的边的权值最小=2,所以边<mst[4],4>=4加入MST

最小生成树Prim算法理解_第4张图片

此时,因为点V4的加入,需要更新lowcost数组和mst数组:

lowcost[2]=5,lowcost[3]=0,lowcost[4]=0,lowcost[5]=6lowcost[6]=0

mst[2]=3,mst[3]=0,mst[4]=0mst[5]=3mst[6]=0


明显看出,以V2为终点的边的权值最小=5,所以边<mst[2],2>=5加入MST

最小生成树Prim算法理解_第5张图片

此时,因为点V2的加入,需要更新lowcost数组和mst数组:

lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=3,lowcost[6]=0

mst[2]=0,mst[3]=0,mst[4]=0mst[5]=2mst[6]=0


很明显,以V5为终点的边的权值最小=3,所以边<mst[5],5>=3加入MST

lowcost[2]=0,lowcost[3]=0lowcost[4]=0,lowcost[5]=0lowcost[6]=0

mst[2]=0,mst[3]=0mst[4]=0,mst[5]=0mst[6]=0


至此,MST构建成功,如图所示:


根据上面的过程,可以容易的写出具体实现代码如下(cpp):

#include<iostream>
#include<fstream>
using  namespace std;

#define MAX 100
#define MAXCOST 0x7fffffff

int graph[MAX][MAX];

int prim(int graph[][MAX], int n)
{
	int lowcost[MAX];
	int mst[MAX];
	int i, j, min, minid, sum = 0;
	for (i = 2; i <= n; i++)
	{
		lowcost[i] = graph[1][i];
		mst[i] = 1;
	}
	mst[1] = 0;
	for (i = 2; i <= n; i++)
	{
		min = MAXCOST;
		minid = 0;
		for (j = 2; j <= n; j++)
		{
			if (lowcost[j] < min && lowcost[j] != 0)
			{
				min = lowcost[j];
				minid = j;
			}
		}
		cout << "V" << mst[minid] << "-V" << minid << "=" << min << endl;
		sum += min;
		lowcost[minid] = 0;
		for (j = 2; j <= n; j++)
		{
			if (graph[minid][j] < lowcost[j])
			{
				lowcost[j] = graph[minid][j];
				mst[j] = minid;
			}
		}
	}
	return sum;
}

int main()
{
	int i, j, k, m, n;
	int x, y, cost;
	ifstream in("input.txt");
	in >> m >> n;//m=顶点的个数,n=边的个数
	//初始化图G
	for (i = 1; i <= m; i++)
	{
		for (j = 1; j <= m; j++)
		{
			graph[i][j] = MAXCOST;
		}
	}
	//构建图G
	for (k = 1; k <= n; k++)
	{
		in >> i >> j >> cost;
		graph[i][j] = cost;
		graph[j][i] = cost;
	}
	//求解最小生成树
	cost = prim(graph, m);
	//输出最小权值和
	cout << "最小权值和=" << cost << endl;
	system("pause");
	return 0;
}

Input:

6 10
1 2 6
1 3 1
1 4 5
2 3 5
2 5 3
3 4 5
3 5 6
3 6 4
4 6 2
5 6 6

Output:

V1-V3=1
V3-V6=4
V6-V4=2
V3-V2=5
V2-V5=3
最小权值和=15
请按任意键继续. . .


你可能感兴趣的:(最小生成树Prim,Prim算法理解)