Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
1、后序遍历的最后一个节点永远是该树的根;
2、中序遍历中该节点将该树分为左右两个子树,设该节点位置为i
3、在后序遍历中,对于根节点有,0到i-1为其左子树所有节点,i到post_end-1(后序遍历最后一个元素的前一个元素)为其右子树所有节点
所以对于中序序列的0到i-1,后序序列的0到i-1,及中序序列的i+1,后序序列的i到post_end-1,都有以上性质,递归求解即可。
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: void build(vector<int> &inorder, vector<int> &postorder, TreeNode * &root, int in_start, int in_end,int post_start, int post_end){ if(in_start>in_end)return; root = new TreeNode(postorder[post_end]); int i; for(i = in_start; i<=in_end; i++) if(inorder[i]==postorder[post_end]) break; int post_mid = post_start+i-in_start; build(inorder, postorder, root->left, in_start, i-1, post_start, post_mid-1); build(inorder, postorder, root->right, i+1, in_end, post_mid, post_end-1); } TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) { if(!inorder.size())return NULL; TreeNode *root = NULL; build(inorder, postorder, root, 0, inorder.size()-1, 0, postorder.size()-1); return root; } };