Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
此题最土的可以用O(N^2)来搞,但是请相信我。这么搞是行不通的。
分析一下问题:要存放最多的水,那么是求出min(height[i], height[j]) * (j - i)中的最大值,其中j > i;
i~j存水的大小,是由min(height[i], height[j])来决定的。
如果height[i] > height[j],且i+1~j可以更多,必然有height[i+1] > height[i].
如果height[i] < height[j],且i~j-1可以更多,必然有height[j-1] > height[j].
因此,每次通过调整短板min(height[i], height[j])来找更大的容量。
贪心O(n).
ij分别从两端开始走。每次移动短板。
#define min(a,b) ((a) > (b) ? (b) : (a)) #define max(a,b) ((a) > (b) ? (a) : (b)) class Solution { public: int maxArea(vector<int> &height) { int res = -1; int i = 0; int j = height.size() - 1; int m; while (i < j) { m = min(height[i], height[j]); res = max(res, (j-i)*m); if (height[i] == m) { i++; } else { j--; } } return res; } };