问题描述:求二叉树的任意两个节点的最近公共祖先
/*//最近公共祖先 题目描述:给定一棵带权树,求u,v两节点的最短长度 算法思想:找到u,v两点的最近公共祖先lca(v) 若dis[u]表示根节点到u的长度,则res=dis[u]+dis[v]-2*dis[lca(v)] */ #include <iostream> #include <string> #define NN 40002 // number of house #define MM 202 // number of query using namespace std; typedef struct node{ int v;//节点 int d;//v节点与nxt相连的权值 struct node *nxt; }NODE; NODE *Link1[NN];//邻接表,Link1[u]表示与u相连所有节点链 NODE edg1[NN * 2]; // 树中的边 NODE *Link2[NN]; NODE edg2[NN * 2]; // 询问的点对 int idx1, idx2, N, M; int res[MM][3]; // 记录结果,res[i][0]: u res[i][1]: v res[i][2]: lca(u, v) int fat[NN];//并查集表 int vis[NN];//记录访问点 int dis[NN];//根到i节点的长度 //前插法 void Add(int u, int v, int d, NODE edg[], NODE *Link[], int &idx){ edg[idx].v = v; edg[idx].d = d; edg[idx].nxt = Link[u]; Link[u] = edg + idx++; edg[idx].v = u; edg[idx].d = d; edg[idx].nxt = Link[v]; Link[v] = edg + idx++; } int find(int x){ // 并查集路径压缩 if(x != fat[x]){ return fat[x] = find(fat[x]); } return x; } void Tarjan(int u){ vis[u] = 1; fat[u] = u; for (NODE *p = Link2[u]; p; p = p->nxt){ if(vis[p->v]){ res[p->d][2] = find(p->v); // 存的是最近公共祖先结点 } } for (NODE *p = Link1[u]; p; p = p->nxt){ if(!vis[p->v]){ dis[p->v] = dis[u] + p->d; Tarjan(p->v); fat[p->v] = u; } } } int main() { freopen("C:\\in.txt","r",stdin); int T, i, u, v, d; scanf("%d", &T); while(T--){ scanf("%d%d", &N, &M); idx1 = 0; memset(Link1, 0, sizeof(Link1)); for (i = 1; i < N; i++){ scanf("%d%d%d", &u, &v, &d); Add(u, v, d, edg1, Link1, idx1); } idx2 = 0; memset(Link2, 0, sizeof(Link2)); for (i = 1; i <= M; i++){ scanf("%d%d", &u, &v); Add(u, v, i, edg2, Link2, idx2); res[i][0] = u; res[i][1] = v; } memset(vis, 0, sizeof(vis)); dis[1] = 0; Tarjan(1); for (i = 1; i <= M; i++){ printf("%d\n", dis[res[i][0]] + dis[res[i][1]] - 2 * dis[res[i][2]]); } } return 0; }