刚才看到一篇不错的文章,对于提高自己的算法还是很有帮助的,我记得我大二学数据结构的时候学过,貌似有点忘记了,嘿嘿,现在转过来复习一下。
插入排序的基本思想是在遍历数组的过程中,假设在序号 i 之前的元素即 [0..i-1] 都已经排好序,本趟需要找到 i 对应的元素 x 的正确位置 k ,并且在寻找这个位置 k 的过程中逐个将比较过的元素往后移一位,为元素 x “腾位置”,最后将 k 对应的元素值赋为 x ,一般情况下,插入排序的时间复杂度和空间复杂度分别为 O(n2 ) 和 O(1)。
/** * @param int[] 未排序数组 * @return int[] 排完序数组 */ public int[] sortInsert(int[] array){ for(int i=1;i<array.length;i++){ int temp = array[i]; int j; for(j=i-1;j >= 0 && temp< array[j]; j--){ array[j + 1] = array[j]; } array[j + 1] = temp; } return array; }
/** * @param int[] 未排序数组 * @return int[] 排完序数组 */ public int[] sortSelect(int[] arr){ for (int i = 0; i < arr.length; i++) { int miniPost = i; for (int m = i + 1; m < arr.length; m++) { if (arr[m] < arr[miniPost]) { miniPost = m; } } if (arr[i] > arr[miniPost]) { int temp; temp = arr[i]; arr[i] = arr[miniPost]; arr[miniPost] = temp; } } return arr; }
/** * @param int[] 未排序数组 * @return int[] 排完序数组 */ public int[] sortBubble(int[] array){ int temp; // 第一层循环:表明比较的次数, 比如 length 个元素,比较次数为 length-1 次(肯定不需和自己比) for(int i=0;i<array.length-1;i++){ for (int j = array.length - 1; j > i; j--) { if (array[j] < array[j - 1]) { temp = array[j]; array[j] = array[j - 1]; array[j - 1] = temp; } } } return array; }
/** * @param int[] 未排序数组 * @return int[] 排完序数组 */ public int[] sortQuick(int[] array){ return quickSort(array, 0, array.length-1); } private int[] quickSort(int[] arr, int low, int heigh) { if (low < heigh) { int division = partition(arr, low, heigh); quickSort(arr, low, division - 1); quickSort(arr, division + 1, heigh); } return arr; } // 分水岭,基位,左边的都比这个位置小,右边的都大 private int partition(int[] arr, int low, int heigh) { int base = arr[low]; //用子表的第一个记录做枢轴(分水岭)记录 while (low < heigh) { //从表的两端交替向中间扫描 while (low < heigh && arr[heigh] >= base) { heigh--; } // base 赋值给 当前 heigh 位,base 挪到(互换)到了这里,heigh位右边的都比base大 swap(arr, heigh, low); while (low < heigh && arr[low] <= base) { low++; } // 遇到左边比base值大的了,换位置 swap(arr, heigh, low); } // now low = heigh; return low; } private void swap(int[] arr, int a, int b) { int temp; temp = arr[a]; arr[a] = arr[b]; arr[b] = temp; }
/** * @param int[] 未排序数组 * @return int[] 排完序数组 */ private int[] sort(int[] nums, int low, int high) { int mid = (low + high) / 2; if (low < high) { // 左边 sort(nums, low, mid); // 右边 sort(nums, mid + 1, high); // 左右归并 merge(nums, low, mid, high); } return nums; } private void merge(int[] nums, int low, int mid, int high) { int[] temp = new int[high - low + 1]; int i = low;// 左指针 int j = mid + 1;// 右指针 int k = 0; // 把较小的数先移到新数组中 while (i <= mid && j <= high) { if (nums[i] < nums[j]) { temp[k++] = nums[i++]; } else { temp[k++] = nums[j++]; } } // 把左边剩余的数移入数组 while (i <= mid) { temp[k++] = nums[i++]; } // 把右边边剩余的数移入数组 while (j <= high) { temp[k++] = nums[j++]; } // 把新数组中的数覆盖nums数组 for (int k2 = 0; k2 < temp.length; k2++) { nums[k2 + low] = temp[k2]; } } public int[] sortMerge(int[] array) { return sort(array, 0, array.length - 1); }
/** * @param int[] 未排序数组 * @return int[] 排完序数组 */ public int[] sortShell(int[] array) { // 取增量 int step = array.length / 2; while (step >= 1) { for (int i = step; i < array.length; i++) { int temp = array[i]; int j = 0; // 跟插入排序的区别就在这里 for (j = i - step; j >= 0 && temp < array[j]; j -= step) { array[j + step] = array[j]; } array[j + step] = temp; } step /= 2; } return array; }
/** * @param int[] 未排序数组 * @return int[] 排完序数组 */ public int[] sortHeap(int[] array) { buildHeap(array);// 构建堆 int n = array.length; int i = 0; for (i = n - 1; i >= 1; i--) { swap(array, 0, i); heapify(array, 0, i); } return array; } private void buildHeap(int[] array) { int n = array.length;// 数组中元素的个数 for (int i = n / 2 - 1; i >= 0; i--) heapify(array, i, n); } private void heapify(int[] A, int idx, int max) { int left = 2 * idx + 1;// 左孩子的下标(如果存在的话) int right = 2 * idx + 2;// 左孩子的下标(如果存在的话) int largest = 0;// 寻找3个节点中最大值节点的下标 if (left < max && A[left] > A[idx]) largest = left; else largest = idx; if (right < max && A[right] > A[largest]) largest = right; if (largest != idx) { swap(A, largest, idx); heapify(A, largest, max); } } } // 建堆函数,认为【s,m】中只有 s // 对应的关键字未满足大顶堆定义,通过调整使【s,m】成为大顶堆===================================================== public static void heapAdjust(int[] array, int s, int m) { // 用0下标元素作为暂存单元 array[0] = array[s]; // 沿孩子较大的结点向下筛选 for (int j = 2 * s; j <= m; j *= 2) { // 保证j为较大孩子结点的下标,j < m 保证 j+1 <= m ,不越界 if (j < m && array[j] < array[j + 1]) { j++; } if (!(array[0] < array[j])) { break; } // 若S位较小,应将较大孩子上移 array[s] = array[j]; // 较大孩子的值变成S位的较小值,可能引起顶堆的不平衡,故对其所在的堆进行筛选 s = j; } // 若S位较大,则值不变;否则,S位向下移动至2*s、4*s、。。。 array[s] = array[0];