1069. The Black Hole of Numbers (20)

题目:

For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.

For example, start from 6767, we'll get:

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...

Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.

Input Specification:

Each input file contains one test case which gives a positive integer N in the range (0, 10000).

Output Specification:

If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.

Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
注意:
1、思路就是按照题意不断reverse计算差值,直到出现6174。
2、要注意的一点是case 5应该就是输入为6174的情况,这时候要输出   7641 - 1467 = 6174

代码:
//1069
#include<iostream>
#include<algorithm>
using namespace std;

int main()
{
	int n;
	scanf("%d",&n);
	if(n==6174)
	{//case 5
		printf("7641 - 1467 = 6174");
		return 0;
	}
	int num[4];
	while(1)
	{
		int a,b;
		num[0]=n/1000;
		num[1]=(n/100)%10;
		num[2]=(n/10)%10;
		num[3]=n%10;
		sort(num,num+4);
		a=num[3]*1000+num[2]*100+num[1]*10+num[0];
		b=num[0]*1000+num[1]*100+num[2]*10+num[3];
		if(a-b==n)
			break;
		printf("%04d - %04d = %04d\n",a,b,a-b);
		n=a-b;
	}
	return 0;
}


你可能感兴趣的:(考试,pat,浙江大学)