1103. Integer Factorization (30)

The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P (1<P<=7). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n1^P + ... nK^P

where ni (i=1, ... K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122 + 42 + 22 + 22 + 12, or 112+ 62 + 22 + 22 + 22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1, a2, ... aK } is said to be larger than { b1, b2, ... bK } if there exists 1<=L<=K such that ai=bi for i<L and aL>bL

If there is no solution, simple output "Impossible".

Sample Input 1:

169 5 2

Sample Output 1:

169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2

Sample Input 2:

169 167 3

Sample Output 2:

Impossible
 1 #include<stdio.h>
 2 #include<string>
 3 #include<iostream>
 4 #include<string.h>
 5 #include<sstream>
 6 #include<vector>
 7 #include<map>
 8 #include<stdlib.h>
 9 #include<queue>
10 #include<math.h>
11 #include<set>
12 using namespace std;
13 
14 int k,p;
15 int MAX = -1;
16 vector<int> re;
17 void DFS(vector<int>& vv,int n)
18 {
19     if(vv.size() == k )
20     {
21         if(n == 0)
22         {
23             int sum = 0;
24             for(int i = 0 ;i < k;++i)
25                 sum += vv[i];
26             if(sum >= MAX) // 需要等号,可使得 sequence { a1, a2, ... aK } is said to be larger than { b1, b2, ... bK } i
27             {
28                 MAX = sum;
29                 re = vv;
30             }
31         }
32         vv.pop_back();
33         return;
34     }
35     int low = vv.size() == 0 ? 1 : vv[vv.size() -1];//剪枝 使得只有增序情况
36     int m = sqrt(double(n));
37     for(int i = low ; i <= m;++i)
38     {
39         int tmp = pow(double(i),p);
40         if(n >= tmp)
41         {
42             vv.push_back(i);
43             DFS(vv,n-tmp);
44         }else break;
45     }
46     if(!vv.empty())
47         vv.pop_back();
48 }
49 
50 int main()
51 {
52     int n;
53     scanf("%d%d%d",&n,&k,&p);
54     vector<int> vv;
55     DFS(vv, n);
56     if(re.empty())
57     {
58         printf("Impossible\n");
59     }
60     else
61     {
62         printf("%d = %d^%d",n,re[re.size()-1],p);
63         for(int i = re.size() - 2;i >= 0;--i)
64         {
65             printf(" + %d^%d",re[i],p);
66         }
67         printf("\n");
68     }
69     return 0;
70 }

 

你可能感兴趣的:(1103. Integer Factorization (30))