Kafka - 消费接口分析

1.概述

  在 Kafka 中,官方对外提供了两种消费 API,一种是高等级消费 API,另一种是低等级的消费 API。在 《高级消费 API》一文中,介绍了其高级消费的 API 实现。今天给大家介绍另一种消费 API。

2.内容

  在使用过 Kafka 的高级消费 API 后,我们知道它是一种高度抽象的消费 API,使用起来简单,方便,但是对于某些特殊的需求我们可能要用到第二种更加底层的 API。那么,我们首先需要知道低级消费 API 的作用。它能帮助我们去做那些事情:

  • 一个消息进行多次读取
  • 在处理过程中只消费 Partition 其中的某一部分消息
  • 添加事物管理机制以保证消息仅被处理一次

  当然,在使用的过程当中也是有些弊端的,其内容如下:

  • 必须在程序中跟踪 Offset 的值
  • 必须找出指定的 Topic Partition 中的 Lead Broker
  • 必须处理 Broker 的变动

  使用其 API 的思路步骤如下所示:

  • 从所有处于 Active 状态的 Broker 中找出哪个是指定 Topic Partition 中的 Lead Broker
  • 找出指定 Topic Partition 中的所有备份 Broker
  • 构造请求
  • 发送请求并查询数据
  • 处理 Leader Broker 的变动

3.代码实现

3.1 Java Project

  若是使用 Java Project 工程去实现该部分代码,需要添加相关以来 JAR 文件,其内容包含如下:

  • scala-xml_${version}-${version}.jar
  • scala-library-${version}.jar
  • metrics-core-${version}.jar
  • kafka-client-${version}.jar
  • kafka_${version}-${version}.jar

  针对 Java Project 工程,需要自己筛选 JAR 去添加。保证代码的顺利执行。

3.2 Maven Project

  对 Maven 工程,在 pom.xml 文件中添加相应的依赖信息即可,简单方便。让 Maven 去管理相应的依赖 JAR 文件。内容如下所示:

<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka_2.11</artifactId>
    <version>0.8.2.1</version>
    <exclusions>
        <exclusion>
            <groupId>org.apache.zookeeper</groupId>
            <artifactId>zookeeper</artifactId>
    </exclusion>
    <exclusion>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
    </exclusion>
    </exclusions>
</dependency>

  这样在 Maven 工程中相应的依赖 JAR 文件就添加完成了。

3.3 代码实现

  在低级消费 API 中,实现代码如下所示:

/**
 * @Date Mar 2, 2016
 *
 * @Author dengjie
 *
 * @Note Simple consumer api
 */
public class SimpleKafkaConsumer {
	private static Logger log = LoggerFactory.getLogger(SimpleKafkaConsumer.class);
	private List<String> m_replicaBrokers = new ArrayList<String>();

	public SimpleKafkaConsumer() {
		m_replicaBrokers = new ArrayList<String>();
	}

	public static void main(String[] args) {
		SimpleKafkaConsumer example = new SimpleKafkaConsumer();
		// Max read number
		long maxReads = SystemConfig.getIntProperty("kafka.read.max");
		// To subscribe to the topic
		String topic = SystemConfig.getProperty("kafka.topic");
		// Find partition
		int partition = SystemConfig.getIntProperty("kafka.partition");
		// Broker node's ip
		List<String> seeds = new ArrayList<String>();
		String[] hosts = SystemConfig.getPropertyArray("kafka.server.host", ",");
		for (String host : hosts) {
			seeds.add(host);
		}
		int port = SystemConfig.getIntProperty("kafka.server.port");
		try {
			example.run(maxReads, topic, partition, seeds, port);
		} catch (Exception e) {
			log.error("Oops:" + e);
			e.printStackTrace();
		}
	}

	public void run(long a_maxReads, String a_topic, int a_partition, List<String> a_seedBrokers, int a_port)
			throws Exception {
		// Get point topic partition's meta
		PartitionMetadata metadata = findLeader(a_seedBrokers, a_port, a_topic, a_partition);
		if (metadata == null) {
			log.info("[SimpleKafkaConsumer.run()] - Can't find metadata for Topic and Partition. Exiting");
			return;
		}
		if (metadata.leader() == null) {
			log.info("[SimpleKafkaConsumer.run()] - Can't find Leader for Topic and Partition. Exiting");
			return;
		}
		String leadBroker = metadata.leader().host();
		String clientName = "Client_" + a_topic + "_" + a_partition;

		SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
		long readOffset = getLastOffset(consumer, a_topic, a_partition, kafka.api.OffsetRequest.EarliestTime(),
				clientName);
		int numErrors = 0;
		while (a_maxReads > 0) {
			if (consumer == null) {
				consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
			}
			FetchRequest req = new FetchRequestBuilder().clientId(clientName)
					.addFetch(a_topic, a_partition, readOffset, 100000).build();
			FetchResponse fetchResponse = consumer.fetch(req);

			if (fetchResponse.hasError()) {
				numErrors++;
				// Something went wrong!
				short code = fetchResponse.errorCode(a_topic, a_partition);
				log.info("[SimpleKafkaConsumer.run()] - Error fetching data from the Broker:" + leadBroker
						+ " Reason: " + code);
				if (numErrors > 5)
					break;
				if (code == ErrorMapping.OffsetOutOfRangeCode()) {
					// We asked for an invalid offset. For simple case ask for
					// the last element to reset
					readOffset = getLastOffset(consumer, a_topic, a_partition, kafka.api.OffsetRequest.LatestTime(),
							clientName);
					continue;
				}
				consumer.close();
				consumer = null;
				leadBroker = findNewLeader(leadBroker, a_topic, a_partition, a_port);
				continue;
			}
			numErrors = 0;

			long numRead = 0;
			for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) {
				long currentOffset = messageAndOffset.offset();
				if (currentOffset < readOffset) {
					log.info("[SimpleKafkaConsumer.run()] - Found an old offset: " + currentOffset + " Expecting: "
							+ readOffset);
					continue;
				}

				readOffset = messageAndOffset.nextOffset();
				ByteBuffer payload = messageAndOffset.message().payload();

				byte[] bytes = new byte[payload.limit()];
				payload.get(bytes);
				System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8")); // Message deal enter
				numRead++;
				a_maxReads--;
			}

			if (numRead == 0) {
				try {
					Thread.sleep(1000);
				} catch (InterruptedException ie) {
				}
			}
		}
		if (consumer != null)
			consumer.close();
	}

	public static long getLastOffset(SimpleConsumer consumer, String topic, int partition, long whichTime,
			String clientName) {
		TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
		Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
		requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
		kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(requestInfo,
				kafka.api.OffsetRequest.CurrentVersion(), clientName);
		OffsetResponse response = consumer.getOffsetsBefore(request);

		if (response.hasError()) {
			log.info("[SimpleKafkaConsumer.getLastOffset()] - Error fetching data Offset Data the Broker. Reason: "
					+ response.errorCode(topic, partition));
			return 0;
		}
		long[] offsets = response.offsets(topic, partition);
		return offsets[0];
	}

	/**
	 * @param a_oldLeader
	 * @param a_topic
	 * @param a_partition
	 * @param a_port
	 * @return String
	 * @throws Exception
	 *             find next leader broker
	 */
	private String findNewLeader(String a_oldLeader, String a_topic, int a_partition, int a_port) throws Exception {
		for (int i = 0; i < 3; i++) {
			boolean goToSleep = false;
			PartitionMetadata metadata = findLeader(m_replicaBrokers, a_port, a_topic, a_partition);
			if (metadata == null) {
				goToSleep = true;
			} else if (metadata.leader() == null) {
				goToSleep = true;
			} else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) && i == 0) {
				// first time through if the leader hasn't changed give
				// ZooKeeper a second to recover
				// second time, assume the broker did recover before failover,
				// or it was a non-Broker issue
				//
				goToSleep = true;
			} else {
				return metadata.leader().host();
			}
			if (goToSleep) {
				try {
					Thread.sleep(1000);
				} catch (InterruptedException ie) {
				}
			}
		}
		throw new Exception("Unable to find new leader after Broker failure. Exiting");
	}

	private PartitionMetadata findLeader(List<String> a_seedBrokers, int a_port, String a_topic, int a_partition) {
		PartitionMetadata returnMetaData = null;
		loop: for (String seed : a_seedBrokers) {
			SimpleConsumer consumer = null;
			try {
				consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024, "leaderLookup");
				List<String> topics = Collections.singletonList(a_topic);
				TopicMetadataRequest req = new TopicMetadataRequest(topics);
				kafka.javaapi.TopicMetadataResponse resp = consumer.send(req);

				List<TopicMetadata> metaData = resp.topicsMetadata();
				for (TopicMetadata item : metaData) {
					for (PartitionMetadata part : item.partitionsMetadata()) {
						if (part.partitionId() == a_partition) {
							returnMetaData = part;
							break loop;
						}
					}
				}
			} catch (Exception e) {
				log.error("Error communicating with Broker [" + seed + "] to find Leader for [" + a_topic + ", "
						+ a_partition + "] Reason: " + e);
			} finally {
				if (consumer != null)
					consumer.close();
			}
		}
		if (returnMetaData != null) {
			m_replicaBrokers.clear();
			for (kafka.cluster.Broker replica : returnMetaData.replicas()) {
				m_replicaBrokers.add(replica.host());
			}
		}
		return returnMetaData;
	}
}

4.总结

  在使用 Kafka 低级消费 API 时,要明确我们所使用的业务场景,一般建议还是使用高级消费 API,除非遇到特殊需要。另外,在使用过程中,注意 Leader Broker 的处理,和 Offset 的管理。

5.结束语

  这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

你可能感兴趣的:(Kafka - 消费接口分析)