对Hadoop二次排序的理解

MR默认会对键进行排序, 然而有的时候我们也有对值进行排序的需求。 满足这种需求一是可以在reduce阶段排序收集过来的valu es,但是, 如果有数量巨大的values可能就会导致内存溢出等问题, 这就是二次排序应用的场景—— 将对值的排序也安排到MR计算过程之中,而不是单独来做。

首先我们要了解java中排序的机制, 在java中一切都是对象, 而在我们的基本数据类型中都有本类的比较策略, 这样任何的比较操作都要依赖于这个策略, 所以问题也就转化到实现我们自己的策略上来了——策略模式?

Hadoop的IO系统中, 自己定义了许多Writable的接口, 比如IntWritable,Text等等, 这些类里面都通过实现WritableComparator接口 提供了自己的比较策略, 而这个接口继承自RawComparator接口, 也就是最原始的比较器接口,这个原始比较器中未实现的一些方法, 允许(或者要求)我们去实现,给优化效率提供了一个钩子, 比如我们对于某种数据类型中前4个字节感兴趣, 我们就可以只取前4个字节,而不用拿全部。

在权威指南上有个例子,是关于求最大温度的,我做了一点变化, 并做了一些实验,通过实现分区(Partitioner) 策略可以将具有某些特征的键分配到同一个reduce中; 通过实现一个分组(Group)策略, 可以保证具有某些特征的键的值会被组合到一起(组合在一起后, 也就是reduce阶段中的那个可迭代对象); 然后最后实现了一个排序(Sort)策略, 这也就是所谓的关键所在了, 我们可以提供某种策略来控制键的排序。

在工作曾经做过一个估计用户在线时长的MR, 当时没有考虑到效率问题,将排序全部压在reduce阶段, 现在想来确实是个隐患,如果有时间的话最好可以做一下修改, 改为二次排序方式。

以下是实验的代码:

首先是新定义的数据结构代码:
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io. WritableComparable;
import org.apache.hadoop.io. WritableComparator;


public class IntPair implements WritableComparable<IntPair> {
    private int first = 0;
    private int second = 0;
    
    public String toString(){
     return first + "\t" + second;
    }
    
    /**
     * Set the left and right values.
     */
    public void set(int left, int right) {
      first = left;
      second = right;
    }
    public int getFirst() {
      return first;
    }
    public int getSecond() {
      return second;
    }
    /**
     * Read the two integers. 
     * Encoded as: MIN_VALUE -> 0, 0 -> -MIN_VALUE, MAX_VALUE-> -1
     */
    @Override
    public void readFields(DataInput in) throws IOException {
      first = in.readInt() + Integer.MIN_VALUE;
      second = in.readInt() + Integer.MIN_VALUE;
    }
    @Override
    public void write(DataOutput out) throws IOException {
      out.writeInt(first - Integer.MIN_VALUE);
      out.writeInt(second - Integer.MIN_VALUE);
    }
    @Override
    public int hashCode() {
      return first * 157 + second;
    }
    @Override
    public boolean equals(Object right) {
      if (right instanceof IntPair) {
        IntPair r = (IntPair) right;
        return r.first == first && r.second == second;
      } else {
        return false;
      }
    }
    /** A Comparator that compares serialized IntPair. */ 
    public static class Comparator extends WritableComparator {
      public Comparator() {
        super(IntPair.class);
      }

    public int compare(byte[] b1, int s1, int l1,
                         byte[] b2, int s2, int l2) {
        return compareBytes(b1, s1, l1, b2, s2, l2);
      }
    }

    static {                                        // register this comparator
      WritableComparator.define( IntPair.class, new Comparator());
    }

    @Override
    public int compareTo(IntPair o) {
      if (first != o.first) {
        return first < o.first ? -1 : 1;
      } else if (second != o.second) {
        return second < o.second ? -1 : 1;
      } else {
        return 0;
      }
    }

public static int compare(int left, int right) {
// TODO Auto-generated method stub
return left > right ? 1 : (left == right ? 0 : -1);
}
  }

以下是MR代码:
import java.io.IOException;
import java.util.StringTokenizer;


import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.RawComparator;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;


public class UseSecondarySort extends Configured implements Tool{


public static class Map extends Mapper<LongWritable, Text, IntPair, NullWritable>{
private final IntPair key = new IntPair();

public void map(LongWritable inkey, Text invalue, Context context) throws IOException, InterruptedException{
StringTokenizer itr = new StringTokenizer(invalue.toString());
int left = 0;
int right = 0;
if(itr.hasMoreTokens()){
left = Integer.parseInt(itr.nextToken());
if(itr.hasMoreTokens()){
right = Integer.parseInt(itr.nextToken());
}
}
key.set(left, right);
context.write(key, NullWritable.get());
}
}

public static class Reduce extends Reducer<IntPair, NullWritable, IntPair, Text>{
private static final IntPair sign = new IntPair();
public void reduce(IntPair key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException{
sign.set(888888, 888888);
context.write(sign,new Text(this.toString()));
for(NullWritable it : values)
context.write(key, new Text(this.toString()));
}
}

public static class FirstPartitioner extends Partitioner<IntPair, NullWritable>{


@Override
public int getPartition(IntPair key, NullWritable value, int numPartitions) {
return Math.abs(key.getFirst() * 127) % numPartitions;
}

}

 public static class FirstGroupingComparator 
      implements RawComparator<IntPair> {
@Override
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
return WritableComparator.compareBytes(b1, s1, Integer.SIZE/8, b2, s2, Integer.SIZE/8);
}

@Override
public int compare(IntPair o1, IntPair o2) {
int l = o1.getFirst();
int r = o2.getFirst();
return l == r ? 0 : (l < r ? -1 : 1);
}
 }
 
 public static class KeyComparator extends WritableComparator{
protected KeyComparator() {
super(IntPair.class, true);
// TODO Auto-generated constructor stub
}


@Override
public int compare(WritableComparable o1, WritableComparable o2) {
// TODO Auto-generated method stub
IntPair ip1 = (IntPair) o1;
IntPair ip2 = (IntPair) o2;
int cmp = IntPair.compare(ip1.getFirst(), ip2.getFirst());
if(cmp != 0)
return cmp;
return -IntPair.compare(ip1.getSecond(), ip2.getSecond());
}


// @Override
// public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
// // TODO Auto-generated method stub
// return WritableComparator.compareBytes(b1, s1, l1, b2, s2, l2);
// //return 0;
// }
 
 }

public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
int ret = ToolRunner.run(new UseSecondarySort(), args);
System.exit(ret);
}


@Override
public int run(String[] args) throws Exception {
// TODO Auto-generated method stub
Job job = new Job(getConf());
job.setJobName("UseSecondarySort");
job.setJarByClass(UseSecondarySort.class);

job.setMapOutputKeyClass(IntPair.class);
job.setMapOutputValueClass(NullWritable.class);

job.setOutputKeyClass(IntPair.class);
job.setOutputValueClass(Text.class);

job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);

job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);

job.setNumReduceTasks(2);

job.setPartitionerClass(FirstPartitioner.class);
job.setGroupingComparatorClass(FirstGroupingComparator.class);
job.setSortComparatorClass(KeyComparator.class);

FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean success = job.waitForCompletion(true);
return success ? 0 : 1;

}


}


如有问题,欢迎大家交流。

你可能感兴趣的:(exception,hadoop,String,Class,byte,Constructor)