- OpenCV图像噪点消除五大滤波方法
慕婉0307
opencv基础opencv人工智能计算机视觉
在数字图像处理中,噪点消除是提高图像质量的关键步骤。本文将基于OpenCV库,详细讲解五种经典的图像去噪滤波方法:均值滤波、方框滤波、高斯滤波、中值滤波和双边滤波,并通过丰富的代码示例展示它们的实际应用效果。一、图像噪点与滤波基础1.1常见图像噪声类型高斯噪声:符合正态分布的随机噪声椒盐噪声:随机出现的黑白像素点泊松噪声:光子计数噪声量化噪声:模拟信号数字化过程中产生1.2滤波方法分类滤波类型特点
- 什么是MPC(多方安全计算,Multi-Party Computation)
MonkeyKing.sun
安全
MPC(多方安全计算,Multi-PartyComputation)是一种密码学技术,允许多个参与方在不泄露各自私密输入数据的前提下,共同完成一个计算,并得到正确的计算结果。一、什么是MPC?定义:**多方安全计算(MPC)是一种加密协议,允许多个参与者在输入保持私密的情况下,**安全地进行联合计算,并仅暴露计算结果,而不暴露任何中间信息或原始数据。二、通俗理解:一群人合算工资平均值,但不想互相知
- 对照原则在临床试验中的应用与挑战
一、对照原则的科学逻辑1.1核心目的1.1.1区分混杂效应通过对照组设置,区分疾病自然进程、安慰剂效应、回归均值现象及非特异性效应等混杂因素,凸显干预措施的真实疗效。1.2统计本质1.2.1真实疗效计算真实疗效=(干预组终点变化-干预组基线)-(对照组终点变化-对照组基线),通过组间比较抵消共同偏倚。二、对照组的五大类型及适用场景2.1安慰剂对照2.1.1构成外观/用法相同的无活性物质。2.1.2
- 机器视觉_图像算法(六)——形状矩(Hu)
智能之心
#机器视觉_图像算法形状矩opencv
图像形状矩:一个从一幅数字图形中计算出来的矩集,通常描述了该图像形状的全局特征,并提供了大量的关于该图像不同类型的几何特性信息,比如大小、位置、方向及形状等。一阶矩与形状有关,二阶矩显示曲线围绕直线平均值的扩展程度,三阶矩则是关于平均值的对称性的测量。由二阶矩和三阶矩可以导出一组共7个不变矩。而不变矩是图像的统计特性,满足平移、伸缩、旋转均不变的不变性,在图像识别领域得到了广泛的应用。一般由mom
- 基于均值偏移算法的动态目标跟踪研究
Zoiny_楠
算法均值算法目标跟踪
摘要:目标跟踪技术是计算机视觉领域中重要研究课题之一,在人类生活、军事侦察、工业生产、医疗诊断、交通管理等多方面,都有广泛的应用,研究目标跟踪对人类生活、工程应用等具有现实的指导意义。在基于视觉的目标跟踪算法中,经典的Mean-Shift算法以其理论科学有效、操作简单易实现,跟踪性能较好等优势,一直是众多学者研究的热点。可算法也存在着许多缺陷。例如目标模型中混有背景信息的干扰,给目标定位带来了偏差
- 高斯混合模型GMM&K均值(十三-1)——K均值是高斯混合模型的特例
phoenix@Capricornus
模式识别与机器学习均值算法机器学习算法
EM算法与K均值算法的关系K均值可以看成是高斯混合模型的特例。对K均值算法与EM算法进行比较后,可以发现它们之间有很大的相似性。K均值算法将数据点硬(hard)分配到聚类中,每个数据点唯一地与一个聚类相关联,而EM算法基于后验概率进行软(soft)分配。事实上,可以从EM算法推导出K均值算法。考虑一个高斯混合模型,其中混合分量的协方差矩阵由σ2I{\sigma^2}Iσ2I给出,其中σ2{\sig
- 详解3DGS
一碗姜汤
计算机视觉人工智能计算机视觉
4可微分的3D高斯splatting核心目标与表示选择我们的目标是从无法线的稀疏SfM点出发,优化出一种能够实现高质量新视角合成的场景表示。为此,我们选择3D高斯作为基本图元,它兼具可微分的体表示特性和非结构化的显式表示优势,既能支持优化过程,又能实现快速渲染。高斯参数与投影模型3D高斯定义高斯由世界空间中的均值(位置)μ\muμ和协方差矩阵∑\sum∑定义,其概率密度函数为:G(x)=e−12(
- 代码随想录day13二叉树1
皮蛋瘦肉粥_121
二叉树
文章目录二叉树的递归遍历二叉树前序遍历二叉树后序遍历二叉树中序遍历二叉树层序遍历102.二叉树的层序遍历107.二叉树的层序遍历II199.二叉树的右视图637.二叉树的层平均值429.N叉树的层序遍历515.在每个树行中找最大值116.填充每个节点的下一个右侧节点指针117.填充每个节点的下一个右侧节点指针II104.二叉树的最大深度111.二叉树的最小深度二叉树的递归遍历文章讲解确定递归函数的
- 创客匠人揭秘长红 IP 的三力模型:从 193 万发售看 IP 变现本质
创小匠
tcp/ip网络协议网络
在知识付费下半场,为何有的IP昙花一现,而张值符老师能通过创客匠人陪跑实现单场193万变现?其核心在于构建了“愿力、产品力、商业力”的三力模型。一、愿力:IP长红的底层燃料张老师“解决生死困惑”的发心,使其内容天然具备穿透力。创客匠人研究发现,明确“为谁请命”的IP,粉丝粘性比泛领域高2.6倍。某母婴IP将定位从“育儿知识”聚焦到“职场妈妈背奶困境”,内容打开率提升40%,付费转化率达行业均值的3
- 【机器人-深度估计】双目深度估计原理解析
文章目录一、基本原理二、主要处理流程2.1.匹配代价(MatchingCost)(1)常见匹配代价函数1.绝对差(SAD,SumofAbsoluteDifferences)2.平方差(SSD,SumofSquaredDifferences)3.归一化互相关(NCC,NormalizedCross-Correlation)4.Census变换(2)匹配代价函数对比2.2.代价体(CostVolume
- Kaggle金牌方案复现:CGO-Transformer-GRU多模态融合预测实战
1背景分析在2023年Kaggle"GlobalMultimodalDemandForecastingChallenge"竞赛中,CGO-Transformer-GRU方案以领先第二名1.8个百分点的绝对优势夺冠,创下该赛事三年来的最佳成绩。本方案创新性地融合了协方差引导优化(CGO)、注意力机制和时序建模三大技术模块,解决了多模态数据融合中的关键挑战:模态对齐、特征冲突和时序依赖建模。(1)多模
- 梯度增强与XGBoost算法解析
weixin_47233946
算法算法
##一、梯度增强(GradientBoosting)原理###1.1集成学习与Boosting集成学习通过结合多个弱模型提升整体性能,主要包括Bagging(如随机森林)和Boosting两类方法。**梯度增强**属于Boosting家族,核心思想是**串行训练模型,每一步修正前序模型的残差**,最终形成强预测器。###1.2算法核心流程1.**初始化基模型**:用常数(如目标变量均值)预测。2.
- 左神算法之双集合平均值优化操作的最大次数
岳轩子
左神算法算法java开发语言
目录1.题目2.解释3.思路4.代码5.总结1.题目给定两个整数集合a和b,定义magic操作为:从其中一个集合取出一个元素,放入另一个集合。操作后,两个集合的平均值都必须严格大于操作前的平均值。限制条件:不能将任一集合取空(否则无法计算平均值)。如果被移动的元素x在目标集合中已存在,则目标集合的平均值不变(因为集合元素不重复),但源集合的平均值可能改变(因为x被移除)。问题:最多可以进行多少次这
- 上下料引导相机十大品牌横评:2025国产领军队如何逆袭国际巨头?
lingling009
数码相机
核心结论速览:✓迁移科技EpicEyeL:动力电池产线实测定位精度±0.06mm✓基恩士IV3系列:镜面件识别率99.2%,价格超50万✓欧姆龙FZ5:普通工件性价比之选,但微光场景失效率>15%✓技术趋势:动态补偿+多光谱融合成2025决胜点一、国产破局者:迁移科技EpicEyeL(工业级性价比之王)实战场景:某新能源汽车电池托盘产线核心参数对比:指标迁移科技行业均值价值差幅工作距离0.5-3.
- matlab SAR图像均值滤波
点云侠
matlab与合成孔径雷达matlab均值算法开发语言计算机视觉人工智能算法
目录一、算法原理1、计算过程2、参考文献二、代码实现三、结果展示一、算法原理1、计算过程 SAR图像的均值滤波是将平滑窗口内所有像元的强度值进行平均计算,然后赋给平滑窗口的中心像元,其数学表达式为:Ri,j=1n2∑
- 传统蒙特卡洛(Monte Carlo, MC)方法在强化学习中直接把整条回报序列当作“真值”来估计价值函数,通常配合表格化存储,因此无需环境模型且估计无偏,但只能处理有限状态-动作空间且方差较大
强化学习曾小健
人工智能
传统蒙特卡洛(MonteCarlo,MC)方法在强化学习中直接把整条回报序列当作“真值”来估计价值函数,通常配合表格化存储,因此无需环境模型且估计无偏,但只能处理有限状态-动作空间且方差较大medium.comanalyticsvidhya.comincompleteideas.net。“深度蒙特卡洛”(DeepMonteCarlo,DMC)则保留“按回报直接更新”的思想,却用深度网络来逼近$Q(
- 图片批量去重---(均值哈希、插值哈希、感知哈希、三/单通道直方图)
ghx3110
数据/脚本处理均值算法哈希算法直方图图片去重
一、整体步骤本脚本中,关键步骤包括以下步骤:1、图片加载:脚本会遍历指定的图片目录,将所有图片加载到内存中。2、图像预处理:比较之前,通常需要对图片进行预处理,如调整大小、灰度化或直方图均衡化,以消除颜色、尺寸等因素的影响。3、相似度计算:图像相似度的衡量有很多种方法,如像素级别的差异(均方误差)、结构相似度指数(SSIM)、归一化互信息(NMI)或者哈希算法(如PCA-SIFT、BRIEF等)。
- Python-OpenCV-图像滤波
卡朗
PythonOpenCVpythonopencv计算机视觉人工智能图像处理
图像除了包含对应灰度或彩色信息,还包含一些无用的噪点等造成的不均匀扭曲。滤波可以清除这些噪点,平滑图像细节,使得图像更加清晰。均值滤波均值滤波器的原理是将每个像素的灰度值替换为其周围像素灰度值的平均值。其核心思想是去除图像中的高频噪声,同时保留图像中的低频信息。在进行均值滤波操作时,需要定义一个滤波模板(卷积核),通常是一个矩形区域,其大小由模板的宽度和高度决定。在模板中的每一个像素,都会与该像素
- C语言课程训练系统题-一维数组
pitepa
C语言课程练习题c语言算法
C语言课程训练系统题-一维数组1.创建并输出一个一维数组(含20个元素),数组元素的值分别是下标的3倍多22.输入10个数,找出其中最小和最大的数及其位置3.输入10个数,找出最大的数及其位置4.编写程序计算一个包含10个整数的数组中所有整数的平均值(平均值计算为双精度浮点数)。5.利用数组计算fibonacci数列的前10个数,即1,1,2,3,5,……,并按每行打印5个数的格式输出6.编程实现
- 特征筛选方法总结(面试准备15)
爱学习的uu
人工智能大数据数据挖掘决策树
非模型方法一.FILTER过滤法:1.缺失值比例(80%以上缺失则删除)/方差注意:连续变量只删方差为0的,因为变量取值范围会影响方差大小。离散类的看各类取值占比,如果是三分类变量可以视作连续变量。函数:VarianceThreshold二.假设检验:卡方检验看离散变量是否独立方差分析看离散和连续变量是否独立F检验看连续变量是否独立三.互信息的关联度指标:相关系数(f_regression:是相关
- 【对比】DeepAR 和 N-Beats
TIM老师
时序预测
1.DeepAR1.1核心思想提出者:亚马逊(Amazon)团队于2018年提出。目标:针对多变量时间序列进行概率预测(ProbabilisticForecasting),输出预测值的分布(如均值、方差、置信区间),而非单一确定性预测。适用场景:适用于具有多变量、多目标的时间序列预测任务(如零售销售预测、能源负荷预测)。1.2模型结构RNN架构:基于长短时记忆网络(LSTM)或门控循环单元(GRU
- 数据分析方法——常用的数据分析指标和术语
数字天下
数据分析人工智能数据挖掘
在进行数据分析时,我们往往不会对原始的一条一条的数据直接进行分析,因为那毫无意义。通常,需要对数据先做一些聚合运算,比如求和、求平均值、计数等,也就是会用到一些分析指标和术语,这些指标和术语可以帮助我们打开思路,从多种角度对数据进行深度解读。1、平均数(average)一般来说是指算术平均数,也就是一组数据的算术平均值,即全部数据累加除以数据个数的结果。例如:某公司1-4月的销售额分别为200万、
- LangChain实战:利用LangChain SQL Agent和GPT进行文档分析和交互
Cc不爱吃洋葱
langchaingptpromptchatgptai人工智能机器学习
前言我最近接触到一个非常有趣的挑战,涉及到人工智能数字化大量文件的能力,并使用户可以在这些文件上提出复杂的与数据相关的问题,比如:数据检索问题:涉及从数据库中获取特定数据点或数据集,例如“电子产品类别中有多少产品?”或“2021年第四季度总销售额是多少?”汇总查询:需要对数据进行总结的问题,如计算平均值、求和、计数等,例如“所有已上架产品的平均价格是多少?”或“每个地区客户的总人数是多少?”数据关
- D函数.py
是紫焅呢
python开发语言青少年编程visualstudiocode学习方法
前言:函数是编程中的基础概念,它们允许我们封装一段代码,以便在需要时反复调用。通过使用函数,我们不仅可以提高代码的可读性和可维护性,还可以减少重复代码的出现。目录一、函数到底是个啥玩意儿?二、为啥要用函数?三、写第一个函数试试水四、几何计算:从圆面积开始圆面积计算矩形面积计算三角形面积计算五、数学问题:挑战一下自己斐波那契数列阶乘计算素数检查六、列表操作:算算平均值七、看看这些函数到底行不行八、别
- 主成分分析(PCA)例题——给定协方差矩阵
phoenix@Capricornus
PR书稿矩阵线性代数
向量xxx的相关矩阵为Rx=[0.30.10.10.10.3−0.10.1−0.10.3]{\bmR}_x=\begin{bmatrix}0.3&0.1&0.1\\0.1&0.3&-0.1\\0.1&-0.1&0.3\end{bmatrix}Rx=0.30.10.10.10.3−0.10.1−0.10.3计算输入向量的KL变换。解答Rx{\bmR}_xRx的特征值为λ0=0.1\lambda_0=
- Day48打卡 @浙大疏锦行
ayuan0119
python打卡shupython
知识点回顾:随机张量的生成:torch.randn函数在PyTorch中,torch.randn()是一个常用的随机张量生成函数,它可以创建一个由标准正态分布(均值为0,标准差为1)随机数填充的张量。这种随机张量在深度学习中非常实用,常用于初始化模型参数、生成测试数据或模拟输入特征。torch.randn(*size,out=None,dtype=None,layout=torch.strided
- 深度学习之目标检测YOLO简介和YOLO v1模型算法流程详解说明(超详细理论篇)
Studying 开龙wu
深度学习理论(图像分类目标检测)深度学习目标检测YOLO
1.YOLO(YouOnlyLookOnce)2.onestage和twostage含义和区别3.YOLOv1论文背景4.YOLOv1算法流程5.YOLOv1创新点一、YOLO(YouOnlyLookOnce) YOLO(YouOnlyLookOnce)是一种开创性的实时目标检测算法,由JosephRedmon等人于2015年提出。核心思想是将目标检测任务转化为单次前向传播的回归问题,通过单个神
- 使用python生成一个均值为0的随机数
fK0pS
python均值算法开发语言
在Python中生成均值为0的随机数,可以使用random模块或numpy.random模块。以下是几种常见方法:1.使用random模块(标准库)(1)生成[-1,1)之间的均匀分布随机数importrandom#生成[-1,1)之间的随机数(均匀分布)rand_num=random.uniform(-1,1)print(rand_num)(2)生成[-1,1)之间的随机整数rand_int=r
- 数据挖掘与机器学习 期末复习整理
无敌摸鱼高手
数据挖掘与机器学习数据挖掘机器学习人工智能期末复习知识总结
1.分类:–有类别标记信息,因此是一种监督学习–根据训练样本获得分类器,然后把每个数据归结到某个已知的类,进而也可以预测未来数据的归类。2.聚类:–无类别标记,因此是一种无监督学习–无类别标记样本,根据信息相似度原则进行聚类,通过聚类,人们能够识别密集的和稀疏的区域,因而发现全局的分布模式,以及数据属性之间的关系3.聚类方法:划分方法-(分割类型)K-均值K-Means顺序领导者方法基于模型的方法
- vue3 平均值计算
海天胜景
vue.js前端javascript
在Vue3中计算平均值,你可以使用JavaScript的基本运算功能。这里我将演示几种常见的方法来实现这个目的。假设你有一个数组,你想要计算其所有元素的平均值。方法1:使用计算属性(ComputedProperty)这是最Vue的方式,通过计算属性(computedproperty)来计算平均值。平均值:{{average}}import{computed,ref}from'vue';//示例数据
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s