UVa 10213 How Many Pieces of Land?

Problem G
How Many Pieces of Land?
Input: Standard Input
Output: Standard Output
Time Limit: 3 seconds

 

You are given an elliptical shaped land and you are asked to choose n arbitrary points on its boundary. Then you connect all these points with one another with straight lines (that’s n*(n-1)/2 connections for n points). What is the maximum number of pieces of land you will get by choosing the points on the boundary carefully?

 


Fig: When the value of n is 6.

 

Input

The first line of the input file contains one integer S (0 < S < 3500), which indicates how many sets of input are there. The next S lines contain S sets of input. Each input contains one integer N (0<=N<2^31).

 

Output

For each set of input you should output in a single line the maximum number pieces of land possible to get for the value of N.

 

Sample Input:

4
1
2
3
4

 

Sample Output:

1
2
4
8


这个题在《入门经典》这本书里的做法是根据欧拉公式,V - E + F = 2。其中V是顶点数,包括所有顶点数和交点数,E是边数,包括椭圆弧和线段被交点分割成的段数,F是面数,包括题目所求和整个椭圆面这个大面。故题目所求 = E - V + 1。但是这样做一定会WA或TL,因为题目中对于输入的要求是3500个不大于2的31次方的数。因此这个题还有一个考点是高精度数的运算。同时网上有个本题的公式,C(n,4) + C(n,2) + 1。虽然无法推到和证明,但是还是可以理解这个公式的正确性的:

如果没有任何一个点,那么这个椭圆只有一个面——它本身。

每当有一条线(暂时不考虑相交),就会因为分割而多出一个面,n个点能组成C(n,2)条线,所以在原来的基础上加上这1 * C(n,2) = C(n,2)个面。

如果每条线都不与另外一条线相交,那么这样就是结果了,可惜的是,因为任意两点都要连线,故必定有相交,而每个相交又会导致多出一个面,而n个点有多少交线呢?n选2可以选出两个点构成一条线,n选4可以选择4个点,这四个点两两相连有且仅有一个交点(不考虑端点),因此n个点有1 * C(n,4) = C(n,4)个交点,导致多出C(n,4)个面。

因此最终的答案就是1 + C(n,2) + C(n,4)。


有了大数类,有了这个公式,这个题AC就不难了。如果像我一样结果看似“正确”但依然WA敲打,就好好检查大数运算的类吧。提一下自己WA的原因:用Bign这个类的童鞋,这个公式是可以化简成(n * n - n * 5 + 18) * (n - 1) * n / 24 + 1的。但是我们写代码是不能这样写的,因为这个类无法减除负数来,所以当n在1-5之间的时候n * n - n * 5会计算出错误结果。改法就是写成n * n + 18 - n * 5……防止负数出现。


AC代码(0.132s):

#include <iostream>
#include <cstring>

using namespace std;

const int maxn = 200;

struct Bign
{
    int s[maxn];
    size_t len;
    
    Bign()
    {
        memset(s, 0, sizeof(s));
        len = 1;
    }
    
    Bign(int num)
    {
        *this = num;
    }
    
    Bign(const char* num)
    {
        *this = num;
    }
    
    Bign operator = (const int num)
    {
        char s[maxn];
        sprintf(s, "%d", num);
        *this = s;
        return *this;
    }
    
    Bign operator = (const char* num)
    {
        len = strlen(num);
        for (int i = 0; i < len; i++) s[i] = num[len - i - 1] - '0';
        return *this;
    }
    
    ///输出
    string str() const
    {
        string res = "";
        for (int i = 0; i < len; i++) {
            res = (char)(s[i] + '0') + res;
        }
        if (res == "") {
            res = "0";
        }
        return res;
    }
    
    ///去前导零
    void clean()
    {
        while (len > 1 && !s[len - 1]) len--;
    }
    
    ///加
    Bign operator + (const Bign& b) const
    {
        Bign c;
        c.len = 0;
        for (int i = 0, g = 0; g || i < max(len, b.len); i++)
        {
            int x = g;
            if (i < len) x += s[i];
            if (i < b.len) x += b.s[i];
            c.s[c.len++] = x % 10;
            g = x / 10;
        }
        return c;
    }
    
    ///减
    Bign operator - (const Bign& b) const
    {
        Bign c;
        c.len = 0;
        for (int i = 0, g = 0; i < len; i++)
        {
            int x = s[i] - g;
            if (i < b.len) x -= b.s[i];
            if (x >= 0) g = 0;
            else
            {
                g = 1;
                x += 10;
            }
            c.s[c.len++] = x;
        }
        c.clean();
        return c;
    }
    
    ///乘
    Bign operator * (const Bign& b) const
    {
        Bign c;
        c.len = len + b.len;
        for (int i = 0; i < len; i++)
            for (int j = 0; j < b.len; j++)
                c.s[i + j] += s[i] * b.s[j];
        for (int i = 0; i < c.len - 1; i++)
        {
            c.s[i + 1] += c.s[i] / 10;
            c.s[i] %= 10;
        }
        c.clean();
        return c;
    }
    
    ///除
    Bign operator / (const Bign &b) const
    {
        Bign ret, cur = 0;
        ret.len = len;
        for (long i = len - 1; i >= 0; i--)
        {
            cur = cur * 10;
            cur.s[0] = s[i];
            while (cur >= b)
            {
                cur -= b;
                ret.s[i]++;
            }
        }
        ret.clean();
        return ret;
    }
    
    ///模、余
    Bign operator % (const Bign &b) const
    {
        Bign c = *this / b;
        return *this - c * b;
    }
    
    bool operator < (const Bign& b) const
    {
        if (len != b.len) return len < b.len;
        for (long i = len - 1; i >= 0; i--)
            if (s[i] != b.s[i]) return s[i] < b.s[i];
        return false;
    }
    
    bool operator > (const Bign& b) const
    {
        return b < *this;
    }
    
    bool operator <= (const Bign& b) const
    {
        return !(b < *this);
    }
    
    bool operator >= (const Bign &b) const
    {
        return !(*this < b);
    }
    
    bool operator == (const Bign& b) const
    {
        return !(b < *this) && !(*this < b);
    }
    
    bool operator != (const Bign &a) const
    {
        return *this > a || *this < a;
    }
    
    Bign operator += (const Bign &a)
    {
        *this = *this + a;
        return *this;
    }
    
    Bign operator -= (const Bign &a)
    {
        *this = *this - a;
        return *this;
    }
    
    Bign operator *= (const Bign &a)
    {
        *this = *this * a;
        return *this;
    }
    
    Bign operator /= (const Bign &a)
    {
        *this = *this / a;
        return *this;
    }
    
    Bign operator %= (const Bign &a)
    {
        *this = *this % a;
        return *this;
    }
    
    friend istream &operator>>(istream &is, Bign &num)
    {
        string s;
        is >> s;
        num = s.c_str();
        return is;
    }
    
    friend ostream &operator<<(ostream &os, const Bign &num)
    {
        os << num.str();
        return os;
    }
};

int main(int argc, const char * argv[]) {

    Bign n;
    int M;
    cin >> M;
    while (M--) {
        cin >> n;
        cout << (n * n + 18 - n * 5) * (n - 1) * n / 24 + 1 << endl;
    }
    
    return 0;
}


你可能感兴趣的:(ACM,高精度,uva,欧拉公式)