1. C# Lambda表达式及其优势
2. Lambda Expressions in C++
3. Exception Specifications (throw) (C++)
4. noexcept (C++)
[] : 空捕抓条款,表明 lambda body 不访问闭合范围(enclosing scope)的任何变量.
[&] : 以引用的方式访问闭合范围内的前面已声明变量.
[=] : 以值的方式访问闭合范围内的前面已声明的变量.
[this] : 访问类实例的this指针.
auto y = [] (auto first, auto second)
{
return first + second;
};
– 转换前的 lambda 条件:
1. 非泛型.
2. 没有捕抓列表(即没有捕抓任何变量)
– 转换后的 函数
1. 同参数.
2. 相同返回类型.
3. 非虚拟
4. 非显式常量.(non-explicit const)
vs2010
#include "stdafx.h"
#include <memory>
#include <Windows.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <vector>
#include <string>
#include <regex>
class B
{
public:
B(int value):two("B")
{
one = value;
std::cout << "B" << std::endl;
}
~B(){two.clear(); std::cout << "~B" << std::endl;}
int one;
std::string two;
};
void TestSort()
{
std::cout << "TestSort" << std::endl;
// 2010也不支持快速枚举. for(B* b: bs)
// 创建10个对象
std::vector<B*> bs(10);
int value = 0;
std::generate(bs.begin(),bs.end(),[&value]()->B*
{
B* b = new B(++value);
return b;
});
// 搜索奇数的对象
std::vector<B*> bs2;
std::for_each(bs.begin(),bs.end(),[&bs2](B* b)
{
if(b->one % 2)
{
bs2.push_back(b);
}
});
// 排序之前是升序.
std::cout << "Before Sort ==" << std::endl;
std::for_each(bs2.begin(),bs2.end(),[](B* b)
{
std::cout << b->one << std::endl;
});
// 降序排列
std::cout << "After Sort ==" << std::endl;
std::sort(bs2.begin(),bs2.end(),[](B* first,B* second)
{
return first->one > second->one;
});
std::for_each(bs2.begin(),bs2.end(),[](B* b)
{
std::cout << b->one << std::endl;
});
}
typedef void (*FUNC)();
void Foo(FUNC func)
{
func();
}
void TestLambdaAsync()
{
std::cout << "TestLambdaAsync ==" << std::endl;
//2010 不支持lambda转换为FUNC,它只能用于template里的实现;需要vs2012以上才支持.vs2010支持lambda到FUNC的转换.
// 这样就可以直接在 CreateThread里使用 lambda.
//g++ 4.8.1 可以.
// Foo([](){std::cout << "lambda" << std::endl;});
// 错误 2 error C2664: “Foo”: 不能将参数 1 从“`anonymous-namespace'::<lambda6>”转换为“FUNC”
}
void TestMutable()
{
std::cout << "TestMutable==========" << std::endl;
int m = 0;
int n = 0;
//去掉mutable会出现编译错误.Error:表达式必须是可以修改的左值.
// mutable 作用之一就是省略掉本地变量的定义.
// [&, n] (int a){ int n1 = n; m = ++n1 + a; }(4);
[&, n] (int a)mutable{m = ++n + a; }(4);
std::cout << m << std::endl << n << std::endl;
}
int main(int argc, char const *argv[])
{
TestSort();
TestMutable();
return 0;
}
输出:
B
B
B
B
B
B
B
B
B
Before Sort ==
1
3
5
7
9
After Sort ==
9
7
5
3
1
TestMutable==========
5
0
gcc 4.8.1
// function_lambda_expression.cpp
// compile with: /EHsc /W4
#include <Windows.h>
#include <algorithm>
#include <iostream>
#include <vector>
#include <memory>
#include <string>
#include <string.h>
#include "pthread.h"
class A
{
public:
A()
{
std::cout << "A" << std::endl;
buf_ = (char*)malloc(6);
strcpy(buf_,"hello");
}
~A()
{
free(buf_);
buf_ = NULL;
std::cout << "~A" << std::endl;
}
char* buf_;
/* data */
};
// g++ 4.8.1 支持lambda函数到普通函数的转换,但是有条件,不支持capture(推理)
// 查看C++14规范第6条款关于lambda表达式和普通C++函数的转换关系.
// 传递共享指针,多线程共享变量例子.
void TestLambdaAsync(std::shared_ptr<A>& a1)
{
std::cout << "Begin a1.use_count: " << a1.use_count() << std::endl;
pthread_t t1;
std::shared_ptr<A>* a = new std::shared_ptr<A>(a1);
std::cout << "After a1.use_count: " << a1.use_count() << std::endl;
// 如果是C函数指针作为参数,那么lambda也不能捕抓任何变量,如[&a],不然会报错.
// error: cannot convert 'TestLambdaAsync()::__lambda0' to 'void* (*)(void*)' for argument '3' to 'int pthread_create(pthread_t*, pthread_attr_t_* const*, void* (*)(void*), void*)'},NULL);
pthread_create(&t1,NULL,[](void* data)->void*
{
std::shared_ptr<A>* a = reinterpret_cast<std::shared_ptr<A>*>(data);
std::cout << "pthread_create: " << (*a)->buf_ << std::endl;
delete a;
return NULL;
},a);
}
int main()
{
std::cout << "Start ==" << std::endl;
std::shared_ptr<A> a(new A());
for (int i = 0; i < 10; ++i)
{
TestLambdaAsync(a);
}
while(a.use_count() > 1)
{
std::cout << "Sleep" << std::endl;
Sleep(1);
}
std::cout << "Exit ==" << std::endl;
}
输出:
Start ==
A
Begin a1.use_count: 1
After a1.use_count: 2
Begin a1.use_count: 2
After a1.use_count: 3
Begin a1.use_count: 3
After a1.use_count: 4
pthread_create: hello
Begin a1.use_count: 3
After a1.use_count: 4
pthread_create: hello
pthread_create: hello
Begin a1.use_count: 2
After a1.use_count: 3
pthread_create: hello
Begin a1.use_count: 3
After a1.use_count: 3
Begin a1.use_count: 3
After a1.use_count: 4
pthread_create: hello
Begin a1.use_count: 3
After a1.use_count: 4
pthread_create: hello
Begin a1.use_count: 3
After a1.use_count: 4
pthread_create: hello
pthread_create: hello
Begin a1.use_count: 2
After a1.use_count: 3
pthread_create: hello
Sleep
pthread_create: hello
Exit ==
~A