简单易学的机器学习算法——kMeans

一、聚类算法的简介

    聚类算法是一种无监督的学习算法,主要用于将相似的对象自动归到一个类别中。聚类算法与分类算法最大的区别是:聚类算法是无监督的学习算法,而分类算法是有监督的学习算法。这里提到的相似的对象,基于不同的相似度计算,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。

二、kMeans算法的概述

   基本kMeans算法的思想很简单,事先确定常数k,常数k意味着最终的聚类类别数,首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,接着,重新计算每个类的质心(即为类中心),重复这样的过程,知道质心不再改变,最终就确定了每个样本所属的类别以及每个类的质心。由于每次都要计算所有的样本与每一个质心之间的相似度,故在大规模的数据集上,kMeans算法的收敛速度比较慢。

三、kMeans算法的流程

  • 初始化常数k,随机选取初始点为质心
  • 重复计算一下过程,直到质心不再改变
    • 计算样本与每个质心之间的相似度,将样本归类到最相似的类中
    • 重新计算质心
  • 输出最终的质心以及每个类

四、kMeans算法的实现

    对数据集进行测试
简单易学的机器学习算法——kMeans_第1张图片
原始数据集
MATLAB代码
主程序
%% input the data
A = load('testSet.txt');

%% 计算质心
centroids = kMeans(A, 4);

随机选取质心
%% 取得随机中心
function [ centroids ] = randCent( dataSet, k )
    [m,n] = size(dataSet);%取得列数
    centroids = zeros(k, n);
    for j = 1:n
        minJ = min(dataSet(:,j));
        rangeJ = max(dataSet(:,j))-min(dataSet(:,j));
        centroids(:,j) = minJ+rand(k,1)*rangeJ;%产生区间上的随机数
    end
end

计算相似性
function [ dist ] = distence( vecA, vecB )
    dist = (vecA-vecB)*(vecA-vecB)';%这里取欧式距离的平方
end

kMeans的主程序
%% kMeans的核心程序,不断迭代求解聚类中心
function [ centroids ] = kMeans( dataSet, k )
    [m,n] = size(dataSet);
    %初始化聚类中心
    centroids = randCent(dataSet, k);
    subCenter = zeros(m,2);%做一个m*2的矩阵,第一列存储类别,第二列存储距离
    change = 1;%判断是否改变
    while change == 1
        change = 0;
        %对每一组数据计算距离
        for i = 1:m
            minDist = inf;
            minIndex = 0;
            for j = 1:k
                 dist= distence(dataSet(i,:), centroids(j,:));
                 if dist < minDist
                     minDist = dist;
                     minIndex = j;
                 end
            end
            if subCenter(i,1) ~= minIndex
                change = 1;
                subCenter(i,:)=[minIndex, minDist];
            end        
        end
        %对k类重新就算聚类中心
        
        for j = 1:k
            sum = zeros(1,n);
            r = 0;%数量
            for i = 1:m
                if subCenter(i,1) == j
                    sum = sum + dataSet(i,:);
                    r = r+1;
                end
            end
            centroids(j,:) = sum./r;
        end
    end
    
    %% 完成作图
    hold on
    for i = 1:m
        switch subCenter(i,1)
            case 1
                plot(dataSet(i,1), dataSet(i,2), '.b');
            case 2
                plot(dataSet(i,1), dataSet(i,2), '.g');
            case 3
                plot(dataSet(i,1), dataSet(i,2), '.r');
            otherwise
                plot(dataSet(i,1), dataSet(i,2), '.c');
        end
    end
    plot(centroids(:,1),centroids(:,2),'+k');
end

最终的聚类结果

你可能感兴趣的:(机器学习,聚类,kmeans)