题目链接:http://poj.org/problem?id=3384
题意:给定一个凸多边形,用两个半径均为 r 的圆来覆盖凸多边形,求覆盖最大面积时,两圆的圆心坐标,两圆必须完全在多边形内,两圆可以相交。
做法:将凸多边形的每条边内移 r ,求半平面交,得到新的凸多边形,再以距离最远的两个顶点为圆心,这样得到的覆盖面积最大(拿笔画一画就能理解了)。
注意一组数据(discuss中提到的):
4 1
0 0
0 2
2 2
2 0
就是这里错了,RE两次
#include <iostream> #include <cstdio> #include <algorithm> #include <cmath> using namespace std; const double eps = 1e-8; const int maxn = 105; int dq[maxn], top, bot, pn, order[maxn], ln; struct Point { double x, y; } p[maxn]; struct Line { Point a, b; double angle; } l[maxn]; int dblcmp(double k) { if (fabs(k) < eps) return 0; return k > 0 ? 1 : -1; } double multi(Point p0, Point p1, Point p2) { return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x); } bool cmp(int u, int v) { int d = dblcmp(l[u].angle-l[v].angle); if (!d) return dblcmp(multi(l[u].a, l[v].a, l[v].b)) < 0; //大于0取向量左半部分为半平面,小于0,取右半部分 return d < 0; } void getIntersect(Line l1, Line l2, Point& p) { double dot1,dot2; dot1 = multi(l2.a, l1.b, l1.a); dot2 = multi(l1.b, l2.b, l1.a); p.x = (l2.a.x * dot2 + l2.b.x * dot1) / (dot2 + dot1); p.y = (l2.a.y * dot2 + l2.b.y * dot1) / (dot2 + dot1); } double getDis(Point a, Point b) { return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } bool judge(Line l0, Line l1, Line l2) { Point p; getIntersect(l1, l2, p); return dblcmp(multi(p, l0.a, l0.b)) > 0; //大于小于符号与上面cmp()中注释处相反 } void addLine(double x1, double y1, double x2, double y2) { l[ln].a.x = x1; l[ln].a.y = y1; l[ln].b.x = x2; l[ln].b.y = y2; l[ln].angle = atan2(y2-y1, x2-x1); ln++; } bool halfPlaneIntersection() { int i, j; for (i = 0; i < ln; i++) order[i] = i; sort(order, order+ln, cmp); for (i = 1, j = 0; i < ln; i++) if (dblcmp(l[order[i]].angle-l[order[j]].angle) > 0) order[++j] = order[i]; ln = j + 1; dq[0] = order[0]; dq[1] = order[1]; bot = 0; top = 1; for (i = 2; i < ln; i++) { while (bot < top && judge(l[order[i]], l[dq[top-1]], l[dq[top]])) top--; while (bot < top && judge(l[order[i]], l[dq[bot+1]], l[dq[bot]])) bot++; dq[++top] = order[i]; } while (bot < top && judge(l[dq[bot]], l[dq[top-1]], l[dq[top]])) top--; while (bot < top && judge(l[dq[top]], l[dq[bot+1]], l[dq[bot]])) bot++; if (bot + 1 >= top) return false; dq[++top] = dq[bot]; for (pn = 0, i = bot; i < top; i++, pn++) getIntersect(l[dq[i]], l[dq[i+1]], p[pn]); return true; } /* 将多边形每条边向内推移h 若以向量ab方向,ab右面为半平面,则dx,dy为函数中所写; 若以向量ab方向,ab左面为半平面,则dx,dy为函数中所求dx,dy的相反数 */ void innerPush(double h) { double len, dx, dy; for (int i = 0; i < ln; i++) { len = getDis(l[i].a, l[i].b); dx = (l[i].b.y - l[i].a.y) / len * h; dy = (l[i].a.x - l[i].b.x) / len * h; l[i].a.x += dx; l[i].b.x += dx; l[i].a.y += dy; l[i].b.y += dy; } } int main() { int i, j, n; double r; while (scanf ("%d%lf", &n, &r) != EOF) { for (i = 0; i < n; i++) scanf ("%lf%lf", &p[i].x, &p[i].y); for (ln = i = 0; i < n-1; i++) addLine(p[i].x, p[i].y, p[i+1].x, p[i+1].y); addLine(p[i].x, p[i].y, p[0].x, p[0].y); innerPush(r); halfPlaneIntersection(); double maxl = 0, tmp; int id1 = 0, id2 = 0;//必须初始化,可能存在为求到的最远两点的距离为0的情况,这里RE了两次 for (i = 0; i < pn; i++) { for (j = i + 1; j < pn; j++) { tmp = getDis(p[i], p[j]); if (dblcmp(tmp-maxl) > 0) { id1 = i; id2 = j; maxl = tmp; } } } printf ("%.4lf %.4lf %.4lf %.4lf\n", p[id1].x, p[id1].y, p[id2].x, p[id2].y); } return 0; }