我们可以通过产生一个具有某种变换效果的矩形,用坐标上的某个点乘上这个矩阵,就会得到变换后的点。这是线性代数中线性变换的内容。
首先说明下,这本书里用的都是左手坐标系。我们规定左手坐标系,拇指朝向旋转轴,其他手指的方向就是旋转的正方向。
通过线性变换的数学推理,可以得到,
绕X轴旋转θ度的矩阵为:
绕y轴旋转θ度的矩阵为:
绕z轴旋转θ度的矩阵为:
enum E_Axis{Axis_x,Axis_y,Axis_z};
void Matrix3X3::setRotate(E_Axis axis,float theta)
{
float sinValue,cosValue;
sinValue = sin(theta);
cosValue = cos(theta);
switch(axis)
{
case Axis_x:
{
m11 = 1; m12 = 0; m13 = 0;
m21 = 0; m22 = cosValue; m23 = sinValue;
m31 = 0; m32 = -sinValue; m33 = cosValue;
break;
}
case Axis_y:
{
m11 = cosValue; m12 = 0; m13 = -sinValue;
m21 = 0; m22 = 1; m23 = 0;
m31 = sinValue; m32 = 0; m33 = cosValue;
break;
}
case Axis_z:
{
m11 = cosValue; m12 = sinValue; m13 = 0;
m21 = -sinValue; m22 = cosValue; m23 = 0;
m31 = 0; m32 = 0; m33 = 1;
break;
}
default:
assert(false);
}
}
//MathUtil.h
#pragma once
#include <math.h>
enum E_Axis{Axis_x,Axis_y,Axis_z};
const float Pi = 3.14159;
//Matrix3X3.h
#pragma once
#include "MathUtil.h"
#include "Vector3.h"
class Matrix3X3
{
public:
//矩阵相乘
Matrix3X3 operator*(Matrix3X3& rhs);
//矩阵乘等矩阵
Matrix3X3& operator*=(Matrix3X3& rhs);
void setRotate(E_Axis axis,float theta);
public:
float m11,m12,m13;
float m21,m22,m23;
float m31,m32,m33;
};
//向量乘以矩阵
Vector3 operator*(Vector3& vec,Matrix3X3& mat);
//向量乘等矩阵
Vector3& operator*=(Vector3& vec,Matrix3X3& mat);
//Matrix3X3.cpp
#include "Matrix3X3.h"
#include <assert.h>
Matrix3X3 Matrix3X3::operator*(Matrix3X3& rhs)
{
Matrix3X3 tempMat;
tempMat.m11 = this->m11 * rhs.m11 + this->m12 * rhs.m21 + this->m13 * rhs.m31;
tempMat.m12 = this->m11 * rhs.m12 + this->m12 * rhs.m22 + this->m13 * rhs.m32;
tempMat.m13 = this->m11 * rhs.m13 + this->m12 * rhs.m23 + this->m13 * rhs.m33;
tempMat.m21 = this->m21 * rhs.m11 + this->m22 * rhs.m21 + this->m23 * rhs.m31;
tempMat.m22 = this->m21 * rhs.m12 + this->m22 * rhs.m22 + this->m23 * rhs.m32;
tempMat.m23 = this->m21 * rhs.m13 + this->m22 * rhs.m23 + this->m23 * rhs.m33;
tempMat.m31 = this->m31 * rhs.m11 + this->m32 * rhs.m21 + this->m33 * rhs.m31;
tempMat.m32 = this->m31 * rhs.m12 + this->m32 * rhs.m22 + this->m33 * rhs.m32;
tempMat.m33 = this->m31 * rhs.m13 + this->m32 * rhs.m23 + this->m33 * rhs.m33;
return tempMat;
}
Matrix3X3& Matrix3X3::operator*=(Matrix3X3& rhs)
{
*this = *this * rhs;
return *this;
}
Vector3 operator*(Vector3& vec,Matrix3X3& mat)
{
Vector3 tempVec;
tempVec.x = vec.x * mat.m11 + vec.y * mat.m21 + vec.z * mat.m31;
tempVec.y = vec.x * mat.m12 + vec.y * mat.m22 + vec.z * mat.m32;
tempVec.z = vec.x * mat.m13 + vec.y * mat.m23 + vec.z * mat.m33;
return tempVec;
}
Vector3& operator*=(Vector3& vec,Matrix3X3& mat)
{
vec = vec * mat;
return vec;
}
void Matrix3X3::setRotate(E_Axis axis,float theta)
{
float sinValue,cosValue;
sinValue = sin(theta);
cosValue = cos(theta);
switch(axis)
{
case Axis_x:
{
m11 = 1; m12 = 0; m13 = 0;
m21 = 0; m22 = cosValue; m23 = sinValue;
m31 = 0; m32 = -sinValue; m33 = cosValue;
break;
}
case Axis_y:
{
m11 = cosValue; m12 = 0; m13 = -sinValue;
m21 = 0; m22 = 1; m23 = 0;
m31 = sinValue; m32 = 0; m33 = cosValue;
break;
}
case Axis_z:
{
m11 = cosValue; m12 = sinValue; m13 = 0;
m21 = -sinValue; m22 = cosValue; m23 = 0;
m31 = 0; m32 = 0; m33 = 1;
break;
}
default:
assert(false);
}
}
//Vector3.h
#pragma once
class Vector3{
public:
Vector3();
Vector3(float X,float Y,float Z);
//变为零向量
void Zero();
//求负向量
Vector3 operator-() const;
//求向量大小(长度或模)
float Length() const;
//标准化该向量
void Normal();
//向量的加法
Vector3 operator+(Vector3 &rhs) const;
Vector3& operator+=(Vector3 &rhs);
//向量的减法
Vector3 operator-(Vector3 &rhs) const;
Vector3& operator-=(Vector3 &rhs);
//向量乘标量
Vector3 operator*(float scalar);
//向量乘等于标量
Vector3& operator*=(float scalar);
//向量除以等于标量
Vector3& operator/=(float scalar);
//向量除以标量
Vector3 operator/(float scalar);
//距离公式
float Distance(Vector3 &vec) const;
//向量点乘
float operator*(Vector3 &rhs) const;
//向量叉积
Vector3 CrossProduct(Vector3& vec) const;
public:
float x,y,z;
};
//标量乘向量
Vector3 operator*(float scalar, Vector3& vec);
//Vector3.cpp
#include "Vector3.h"
#include <cmath>
Vector3::Vector3():x(0.0),y(0.0),z(0.0)
{
}
Vector3::Vector3(float X,float Y,float Z):x(X),y(Y),z(Z)
{
}
void Vector3::Zero()
{
x = y = z = 0;
}
Vector3 Vector3::operator-() const
{
return Vector3(-x,-y,-z);
}
float Vector3::Length() const
{
return sqrt(x*x+y*y+z*z);
}
Vector3 Vector3::operator*(float scalar)
{
return Vector3(this->x * scalar, this->y * scalar, this->z * scalar);
}
Vector3& Vector3::operator*=(float scalar)
{
return *this = *this * scalar;
}
Vector3& Vector3::operator/=(float scalar)
{
return *this = *this / scalar;
}
Vector3 operator*(float scalar, Vector3& vec)
{
return vec*scalar;
}
Vector3 Vector3::operator/(float scalar)
{
float temp = 1/ scalar;
return *this * temp;
}
void Vector3::Normal()
{
//计算机计算乘法的速度比除法快
float temp = 1 / Length();
x *= temp;
y *= temp;
z *= temp;
}
Vector3 Vector3::operator+(Vector3& rhs) const
{
return Vector3(x+rhs.x,y+rhs.y,z+rhs.z);
}
Vector3& Vector3::operator+=(Vector3& rhs)
{
*this = *this + rhs;
return *this;
}
Vector3 Vector3::operator-(Vector3& rhs) const
{
return Vector3(x-rhs.x,y-rhs.y,z-rhs.z);
}
Vector3& Vector3::operator-=(Vector3& rhs)
{
*this = *this - rhs;
return *this;
}
float Vector3::Distance(Vector3& vec) const
{
return (*this - vec).Length();
}
float Vector3::operator*(Vector3& rhs) const
{
return this->x * rhs.x + this->y * rhs.y + this->z * rhs.z;
}
Vector3 Vector3::CrossProduct(Vector3& vec) const
{
return Vector3(this->y * vec.z - this->z * vec.y,
this->z * vec.x - this->x * vec.z,
this->x * vec.y - this->y * vec.x);
}
//main.cpp
#include <iostream>
#include "Vector3.h"
#include "Matrix3X3.h"
using namespace std;
float ToZero(float num)
{
return (abs(num) < 0.0001 ? 0 : num);
}
void print_v(Vector3 v)
{
cout << "[ " << ToZero(v.x) << ", "
<< ToZero(v.y) << ", "
<< ToZero(v.z) << " ]" << endl;
cout << endl;
}
void print_m(Matrix3X3 m)
{
cout << m.m11 << "\t" << m.m12 << "\t" << m.m13 << endl;
cout << m.m21 << "\t" << m.m22 << "\t" << m.m23 << endl;
cout << m.m31 << "\t" << m.m32 << "\t" << m.m33 << endl;
cout << endl;
}
int main()
{
Vector3 a(10,0,0),b;
Matrix3X3 M;
M.setRotate(Axis_z,Pi/2);
b = a * M;
print_v(b);
system("pause");
return 0;
}
运行结果:
[ 0, 10, 0 ]