其实推荐用于D-optimal试验设计表格生成的函数和代码
对3因素混合水平[3,3,4]和有交互作用,采用18次试验的方案,D-optimal的试验设计表格如下:
warning off; sortrows(rowexch(3,18,'interaction','categorical',1:3,'levels',[3,3,4],'tries',1000,'maxiter',50))方差分析用matlab的anovan就可以了;
回归分析的一个例子matlab代码来自华东理工大学黄华江博士的书
function DOE % D-优化试验设计 % % Author: HUANG Huajiang % Copyright 2003 UNILAB Research Center, % East China University of Science and Technology, Shanghai, PRC % $Revision: 1.0 $ $Date: 2003/07/12 $ clear all clc % 各因素的水平 p = [470, 300,120 285, 190, 65 100, 80, 10]; % D-优化试验设计:先生成settings,再将settings转变为相应实验条件expCond settings = cordexch(3,13,'q'); % settings: 因子设置矩阵 mr = p(2,:); % mr: middle row, i.e., middle level mr = mr(ones(13,1),:); hr = (p(1,:) - p(3,:))/2; hr = hr(ones(13,1),:); expCond = settings.*hr + mr; % expCond: settings的相应实验条件 % 由反应模拟器生成实验数据data p1 = expCond(:,1); p2 = expCond(:,2); p3 = expCond(:,3); y = zeros(13,1); for k = 1:13 y(k) = 1.25*(p2(k) - p3(k)/1.5183)./(1 + 0.064*p1(k) ... + 0.0378*p2(k) + 0.1326*p3(k))*normrnd(1,0.02); end data = [expCond y] % data为实验数据矩阵(实验条件及其对应的反应速率) % 数据分析: 由非线性模型Nonlinear Model估计参数 x = data(:,1:3); y = data(:,4); xname = str2mat('Hydrogen','n-Pentane','Isopentane'); yname = 'Reaction Rate'; beta0 = [1.2 0.1 0.01 0.1 1.5]; % 参数初值 nlintool(x,y,@hougen,beta0,[],xname,yname); % rstool(x,y,[],[],xname,yname); rstool(x,y,'quadratic',[],xname,yname); [beta,resid,j] = nlinfit(x,y,@hougen,beta0) ci = nlparci(beta,resid,j) % 参数辨识结果:β1、β2、... β5 fprintf('Estimated Parameters:\n') fprintf('\tβ1 = %.2f ± %.2f\n',beta(1),ci(1,2)-beta(1)) fprintf('\tβ2 = %.3f ± %.3f\n',beta(2),ci(2,2)-beta(2)) fprintf('\tβ3 = %.4f ± %.4f\n',beta(3),ci(3,2)-beta(3)) fprintf('\tβ4 = %.4f ± %.4f\n',beta(4),ci(4,2)-beta(4)) fprintf('\tβ5 = %.4f ± %.4f\n',beta(5),ci(5,2)-beta(5))