matlab用于试验设计回归分析实验结果的例子

其实推荐用于D-optimal试验设计表格生成的函数和代码

对3因素混合水平[3,3,4]和有交互作用,采用18次试验的方案,D-optimal的试验设计表格如下:

warning off;
sortrows(rowexch(3,18,'interaction','categorical',1:3,'levels',[3,3,4],'tries',1000,'maxiter',50))
方差分析用matlab的anovan就可以了;



回归分析的一个例子matlab代码来自华东理工大学黄华江博士的书

function DOE 
% D-优化试验设计 
% 
%   Author: HUANG Huajiang 
%   Copyright 2003 UNILAB Research Center,  
%   East China University of Science and Technology, Shanghai, PRC 
%   $Revision: 1.0 $  $Date: 2003/07/12 $ 
 
clear all 
clc 
 
% 各因素的水平 
p = [470, 300,120 
     285, 190, 65 
     100, 80, 10]; 
 
% D-优化试验设计:先生成settings,再将settings转变为相应实验条件expCond 
settings = cordexch(3,13,'q');      % settings: 因子设置矩阵 
mr = p(2,:);                        % mr: middle row, i.e., middle level 
mr = mr(ones(13,1),:); 
hr = (p(1,:) - p(3,:))/2; 
hr = hr(ones(13,1),:); 
expCond = settings.*hr + mr;        % expCond: settings的相应实验条件 
 
% 由反应模拟器生成实验数据data 
p1 = expCond(:,1); 
p2 = expCond(:,2); 
p3 = expCond(:,3); 
y = zeros(13,1); 
for k = 1:13 
    y(k)  = 1.25*(p2(k) - p3(k)/1.5183)./(1 + 0.064*p1(k)     ... 
            + 0.0378*p2(k) + 0.1326*p3(k))*normrnd(1,0.02); 
end 
data = [expCond y]     % data为实验数据矩阵(实验条件及其对应的反应速率) 
 
% 数据分析: 由非线性模型Nonlinear Model估计参数 
x = data(:,1:3);  
y = data(:,4); 
xname = str2mat('Hydrogen','n-Pentane','Isopentane'); 
yname = 'Reaction Rate'; 
beta0 = [1.2 0.1 0.01 0.1 1.5];             % 参数初值 
nlintool(x,y,@hougen,beta0,[],xname,yname); 
% rstool(x,y,[],[],xname,yname); 
rstool(x,y,'quadratic',[],xname,yname); 
 
[beta,resid,j] = nlinfit(x,y,@hougen,beta0) 
ci = nlparci(beta,resid,j) 
 
% 参数辨识结果:β1、β2、... β5 
fprintf('Estimated Parameters:\n') 
fprintf('\tβ1 = %.2f ± %.2f\n',beta(1),ci(1,2)-beta(1)) 
fprintf('\tβ2 = %.3f ± %.3f\n',beta(2),ci(2,2)-beta(2)) 
fprintf('\tβ3 = %.4f ± %.4f\n',beta(3),ci(3,2)-beta(3)) 
fprintf('\tβ4 = %.4f ± %.4f\n',beta(4),ci(4,2)-beta(4)) 
fprintf('\tβ5 = %.4f ± %.4f\n',beta(5),ci(5,2)-beta(5)) 
 


你可能感兴趣的:(DOE)