DLX精确覆盖 poj2676 Sudoku

传送门:点击打开链接

题意:求数独

思路:早就听说了DLX精确覆盖的强大,看了两天终于勉强算是看懂了,关于DLX的详细介绍可以参考下面3位大神总结的

DLX的原理:点击打开链接

DLX用C++的实现代码:点击打开链接

DLX的建图技巧:点击打开链接


要注意的几个地方就是,DLX有两种模式,一种是精确覆盖,一种是重复覆盖。

重复覆盖中包含了一个A*的估计函数,用来剪枝

然后就是把握好建图(感觉这个非常关键)


DLX中包含了许多链表的妙用,比如如何建立循环链表,如何循环除了本身以外的所有其他节点,如何在链表中删除和恢复删除等等,写的非常的飘逸~

#include<map>
#include<set>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<string>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#define fuck printf("fuck")
#define FIN freopen("input.txt","r",stdin)
#define FOUT freopen("output.txt","w+",stdout)
using namespace std;
typedef long long LL;

const int MX = 1000 + 5;
const int MN = 1000000 + 5;
const int INF = 0x3f3f3f3f;

int ans[MX][MX];

struct DLX {
    int m, n;
    int H[MX], S[MX];
    int Row[MN], Col[MN], rear;
    int L[MN], R[MN], U[MN], D[MN];

    void Init(int _m, int _n) {
        m = _m; n = _n;
        rear = n;
        for(int i = 0; i <= n; i++) {
            S[i] = 0;
            L[i] = i - 1;
            R[i] = i + 1;
            U[i] = D[i] = i;
        }
        L[0] = n; R[n] = 0;
        for(int i = 1; i <= m; i++) {
            H[i] = -1;
        }
    }

    void Link(int r, int c) {
        int rt = ++rear;
        Row[rt] = r; Col[rt] = c; S[c]++;

        D[rt] = D[c]; U[D[c]] = rt;
        U[rt] = c; D[c] = rt;
        if(H[r] == -1) {
            H[r] = L[rt] = R[rt] = rt;
        } else {
            int id = H[r];
            R[rt] = R[id]; L[R[id]] = rt;
            L[rt] = id; R[id] = rt;
        }
    }

    void Remove(int c) {
        R[L[c]] = R[c]; L[R[c]] = L[c];
        for(int i = D[c]; i != c; i = D[i]) {
            for(int j = R[i]; j != i; j = R[j]) {
                D[U[j]] = D[j]; U[D[j]] = U[j];
                S[Col[j]]--;
            }
        }
    }

    void Resume(int c) {
        for(int i = U[c]; i != c; i = U[i]) {
            for(int j = L[i]; j != i; j = L[j]) {
                D[U[j]] = U[D[j]] = j;
                S[Col[j]]++;
            }
        }
        R[L[c]] = L[R[c]] = c;
    }

    bool Dance(int cnt) {
        if(R[0] == 0) return true;

        int c = R[0];
        for(int i = R[0]; i != 0; i = R[i]) {
            if(S[i] < S[c]) c = i;
        }

        Remove(c);
        for(int i = D[c]; i != c; i = D[i]) {
            for(int j = R[i]; j != i; j = R[j]) Remove(Col[j]);

            int r = Row[i];
            ans[(r - 1) / 81 + 1][((r - 1) % 81) / 9 + 1] = ((r - 1) % 81) % 9 + 1;
            if(Dance(cnt + 1)) return true;

            for(int j = L[i]; j != i; j = L[j]) Resume(Col[j]);
        }
        Resume(c);
        return false;
    }
} G;

int S[MX][MX], vis[10];

void check(int x, int y) {
    for(int i = 1; i <= 9; i++) vis[i] = 0;
    for(int i = 1; i <= 9; i++) {
        vis[S[i][y]] = vis[S[x][i]] = 1;
    }
    int tx = (x - 1) / 3 + 1, ty = (y - 1) / 3 + 1;
    for(int i = (tx - 1) * 3 + 1; i <= tx * 3; i++) {
        for(int j = (ty - 1) * 3 + 1; j <= ty * 3; j++) {
            vis[S[i][j]] = 1;
        }
    }
}

int main() {
    int T; //FIN;
    scanf("%d", &T);
    while(T--) {
        G.Init(9 * 9 * 9, 4 * 9 * 9);
        for(int i = 1; i <= 9; i++) {
            for(int j = 1; j <= 9; j++) {
                scanf("%1d", &S[i][j]);
            }
        }

        for(int i = 1; i <= 9; i++) {
            for(int j = 1; j <= 9; j++) {
                int tx = (i - 1) / 3 + 1, ty = (j - 1) / 3 + 1, tp = (tx - 1) * 3 + ty;

                if(!S[i][j]) {
                    check(i, j);
                    for(int k = 1; k <= 9; k++) {
                        if(vis[k]) continue;

                        int id = ((i - 1) * 9 + j - 1) * 9 + k;
                        G.Link(id, (i - 1) * 9 + j);
                        G.Link(id, 9 * 9 + (i - 1) * 9 + k);
                        G.Link(id, 2 * 9 * 9 + (j - 1) * 9 + k);
                        G.Link(id, 3 * 9 * 9 + (tp - 1) * 9 + k);
                    }
                } else {
                    int k = S[i][j];
                    int id = ((i - 1) * 9 + j - 1) * 9 + k;
                    G.Link(id, (i - 1) * 9 + j);
                    G.Link(id, 9 * 9 + (i - 1) * 9 + k);
                    G.Link(id, 2 * 9 * 9 + (j - 1) * 9 + k);
                    G.Link(id, 3 * 9 * 9 + (tp - 1) * 9 + k);
                }
            }
        }
        int ret = G.Dance(0);
        for(int i = 1; i <= 9; i++) {
            for(int j = 1; j <= 9; j++) {
                if(S[i][j]) printf("%d", S[i][j]);
                else printf("%d", ans[i][j]);
            }
            printf("\n");
        }

    }
    return 0;
}


你可能感兴趣的:(DLX精确覆盖 poj2676 Sudoku)