二叉排序树

二叉排序树(Binary Sort Tree),又被称为二叉查找树,它是一棵空树,或是具有以下性质的树:
①若它的左子树不为空,则它的左子树上的所有结点的值小于根节点的值;
②若它的右子树不为空,则它的右子树上的所有结点的值大于根节点的值;
③它的左右子树也是二叉排序树;

c++实现

#ifndef BST_H_
#define BST_H_
using namespace std;
#define NULL 0
template<typename T>
struct BSTnode
{
    T m_data;              //关键字 
    BSTnode<T>  *m_left;   //左孩子指针 
    BSTnode<T>  *m_right;  //右孩子指针 
};

template<typename T>
class BSTree
{
public:
    BSTree(T data=NULL); 
    //构造函数
    ~BSTree();
    //析构函数
    bool SearchTree(BSTnode<T> *root, T key, BSTnode<T> *parent, BSTnode<T> *&place);
    //查找,成功 place返回对应结点指针的引用,否则返回其最近双亲结点
    BSTnode<T> *& Getroot();
    //返回根结点指针的引用
    bool InsertTree(T key);
    //插入新的结点
    bool DeleteTree(BSTnode<T> * & place);
    //删除结点
    bool DeleteBST(BSTnode<T> *&root, T key);
    //删除结点定位
    void DestoryTree(BSTnode<T> *root);
    //摧毁二叉排序树
    void InOrderTraverse(BSTnode<T>* node);
    //中序遍历
private:
    BSTnode<T> *m_root;
    // 指向根结点的指针
};
template<typename T>
BSTree<T>::BSTree(T data)
{
    m_root = new BSTnode<T>;
    m_root->m_data = data;
    m_root->m_left = m_root->m_right = NULL;
}
template<typename T>
BSTree<T>::~BSTree()
{
    DestoryTree(m_root);
}

template<typename T>
bool BSTree<T>::SearchTree(BSTnode<T> *root, T key, BSTnode<T> *parent, BSTnode<T> *&place)
{
    if (root==NULL)   //查找失败,定位到其双亲结点
    {
        place = parent;
        return false;
    }
    else if (key == root->m_data)    //查找成功,定位对应结点
    {
        place = root;
        return true;
    }
    else if (key<root->m_data)       //非空时对左或右子树递归
    {
        SearchTree(root->m_left, key, root, place);
    }
    else
    {
        SearchTree(root->m_right, key, root, place);
    }
}
template<typename T>
BSTnode<T> *& BSTree<T>::Getroot()
{
    return m_root;
}
template<typename T>
bool BSTree<T>::InsertTree(T key)
{
    BSTnode<T> *p = NULL;
    BSTnode<T>   *s;

    if (!SearchTree(Getroot(),key,NULL,p))     //查找不成功
    {
        s = new BSTnode<T>;                    
        //此时的p指向待插入位置的双亲结点
        s->m_data = key;
        s->m_left = s->m_right = NULL;
        if (p == NULL)
        {
            exit(1);
        }
        else if (key<p->m_data)
        {
            p->m_left = s;
        }
        else
        {
            p->m_right = s;
        }
        return true;

    }
    else
    {
        return false;                      //该点已经存在
    }
}
template<typename T>
bool BSTree<T>::DeleteBST(BSTnode<T> *&root, T key)
//要对树本身的结构进行修改,需要将指针的引用作为参数
{
    if (root == NULL)
    {
        return false;
    }
    else if (key == root->m_data)
    {
        return DeleteTree(root);
    }
    else if (key<root->m_data)     //类似查找,对左或右子树递归
    {
        DeleteBST(root->m_left, key);
    }
    else
    {
        DeleteBST(root->m_right, key);
    }
}


template<typename T>
bool BSTree<T>::DeleteTree(BSTnode<T> * & place)  
//必须将原本树的指针的引用作为参数
{
    BSTnode<T> *p,*s;
    if (place->m_left==NULL)
        {
        p = place;
        place = place->m_right;
        delete p;

        }
    else if (place->m_right == NULL)
    {
        p = place;
        place = place->m_right;
        delete p;

    }
    else      //左右子树都不为空
    {
        p = place;
        s = place->m_left;
        while (s->m_right!=NULL)
        {
            p = s;
            s = s->m_right;
        }
        place->m_data = s->m_data;
        if (p!=place)   //待删除的结点左子树中有右子树
        {
            p->m_right = s->m_left;
        }
        else            //待删除结点只有左子树
        {
            p->m_left = s->m_left;
        }
        delete s;
    }
    return true;
}

template<class T>
void BSTree<T>::DestoryTree(BSTnode<T> *root)
{
    if (root != NULL)         //从根结点向左右递归删除
    {
        DestoryTree(root->m_left);
        DestoryTree(root->m_right);
        delete root;
    }

}
template<class T>
void BSTree<T>::InOrderTraverse(BSTnode<T>* node)
{
//二叉排序树的中序遍历对应从小到大的排序
    if (node == NULL)
    {
        return;
    }
    else
    {
        InOrderTraverse(node->m_left);
        cout << node->m_data<<" ";
        InOrderTraverse(node->m_right);
    }
}

#endif

测试一下

#include <iostream>
#include <cstdlib>
#include "BST.h"
int main()
{
    using namespace std;
    int n;
    cout << "The number input: ";
    cin >> n;
    int *temp = new int[n];
    cout << "Enter all number separate by blank:" << endl;
    for (int i = 0; i < n; i++)
    {
        cin >> temp[i];
    }
    BSTree<int> My(temp[0]);
    for (int i = 1; i < n; i++)
    {
        My.InsertTree(temp[i]);
    }
    My.InOrderTraverse(My.Getroot());
    cout <<endl<< "enter the num delete: ";
    int m;
    cin >> m;
    My.DeleteBST(My.Getroot(),m);
    My.InOrderTraverse(My.Getroot());
    system("pause");
    return 0;
}

二叉排序树_第1张图片

排序二叉树的重点是查找,插入和删除都是基于递归查找而实现的,这里需要注意的有两个点
①在插入和删除中使用的指针参数不能是按值传递,必须是指针的引用,才能改变树的链接情况。
②是将私有部分的根结点作为引用参数时,不能将返回的指针作为引用,需要将根指针的引用作为参数方可。

你可能感兴趣的:(数据结构,C++,二叉排序树)