说明:
这里为了以后方面查阅浏览,只搬运了别人的基本代码,相关细节可查看其它资料。例如:
http://scikit-learn.org/0.11/auto_examples/linear_model/plot_ols.html
代码:
print __doc__ # Code source: Jaques Grobler # License: BSD import pylab as pl import numpy as np from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis] diabetes_X_temp = diabetes_X[:, :, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X_temp[:-20] diabetes_X_test = diabetes_X_temp[-20:] from sklearn.datasets.samples_generator import make_regression # this is our test set, it's just a straight line with some # gaussian noise X, Y = make_regression(n_samples=100, n_features=1, n_informative=1,\ random_state=0, noise=35) # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # The coefficients print 'Coefficients: \n', regr.coef_ # The mean square error print ("Residual sum of squares: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print ('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs pl.scatter(diabetes_X_test, diabetes_y_test, color='black') pl.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) pl.xticks(()) pl.yticks(()) pl.show()