矩阵快速幂

矩阵 快速幂

super_boy原创文章,转载请注明出处 这里链接

矩阵的快速幂是用来高效地计算矩阵的高次方的。将朴素的o(n)的时间复杂度,降到log(n)。

这里先对原理(主要运用了矩阵乘法的结合律)做下简单形象的介绍:

一般一个矩阵的n次方,我们会通过连乘n-1次来得到它的n次幂。

但做下简单的改进就能减少连乘的次数,方法如下:

把n个矩阵进行两两分组,比如:A*A*A*A*A*A => (A*A)(A*A)(A*A)

这样变的好处是,你只需要计算一次A*A,然后将结果(A*A)连乘自己两次就能得到A^6,即(A*A)^3=A^6。算一下发现这次一共乘了3次,少于原来的5次。

其实大家还可以取A^3作为一个基本单位。原理都一样:利用矩阵乘法的结合律,来减少重复计算的次数。

以上都是取一个具体的数来作为最小单位的长度,这样做虽然能够改进效率,但缺陷也是很明显的,取个极限的例子(可能有点不恰当,但基本能说明问题),当n无穷大的时候,你现在所取的长度其实和1没什么区别。所以就需要我们找到一种与n增长速度”相适应“的”单位长度“,那这个长度到底怎么去取呢???这点是我们要思考的问题。

有了以上的知识,我们现在再来看看,到底怎么迅速地求得矩阵的N次幂。

既然要减少重复计算,那么就要充分利用现有的计算结果咯!~怎么充分利用计算结果呢???这里考虑二分的思想。。

大家首先要认识到这一点:任何一个整数N,都能用二进制来表示。。这点大家都应该知道,但其中的内涵真的很深很深(这点笔者感触很深,在文章的最后,我将谈谈我对的感想)!!

计算机处理的是离散的信息,都是以0,1来作为信号的处理的。可想而知二进制在计算机上起着举足轻重的地位。它能将模拟信号转化成数字信号,将原来连续的实际模型,用一个离散的算法模型来解决。 好了,扯得有点多了,不过相信这写对下面的讲解还是有用的。

回头看看矩阵的快速幂问题,我们是不是也能把它离散化呢?比如A^19 => (A^16)(A^2)(A^1),显然采取这样的方式计算时因子数将是log(n)级别的(原来的因子数是n),不仅这样,因子间也是存在某种联系的,比如A^4能通过(A^2)(A^2)得到,A^8又能通过(A^4)(A^4)得到,这点也充分利用了现有的结果作为有利条件。下面举个例子进行说明:

现在要求A^156,而156(10)=10011100(2)

也就有A^156=>(A^4)(A^8)(A^16)*(A^128) 考虑到因子间的联系,我们从二进制10011100中的最右端开始计算到最左端。细节就说到这,下面给核心代码:

 while(N)
  {
      if(N&1)
          res=res*A;
      n>>=1;
      A=A*A;
  } 

里面的乘号,是矩阵乘的运算,res是结果矩阵。

第3行代码每进行一次,二进制数就少了最后面的一个1。二进制数有多少个1就第3行代码就执行多少次。

好吧,矩阵快速幂的讲解就到这里吧。在文章我最后给出我实现快速幂的具体代码(代码以3*3的矩阵为例)。

现在我就说下我对二进制的感想吧:

我们在做很多”连续“的问题的时候都会用到二进制将他们离散简化

1.多重背包问题

2.树状数组

3.状态压缩DP

……………还有很多。。。究其根本还是那句话:化连续为离散。。很多时候我们并不是为了解决一个问题而使用二进制,更多是时候是为了优化而使用它。所以如果你想让你的程序更加能适应大数据的情况,那么学习学习二进制及其算法思想将会对你有很大帮助。

最后贴出一些代码供大家学习,主要起演示的效果:

#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <iostream> 
using namespace std;

int N;

struct matrix
{
       int a[3][3];
}origin,res;


matrix multiply(matrix x,matrix y)
{
       matrix temp;
       memset(temp.a,0,sizeof(temp.a));
       for(int i=0;i<3;i++)
       {
               for(int j=0;j<3;j++)
               {
                       for(int k=0;k<3;k++)
                       {
                               temp.a[i][j]+=x.a[i][k]*y.a[k][j];
                       }
               }
       }
       return temp;
}

void init()
{
     printf("随机数组如下:\n");
     for(int i=0;i<3;i++)
     {
             for(int j=0;j<3;j++)
             {
                     origin.a[i][j]=rand()%10;
                     printf("%8d",origin.a[i][j]);
             }
             printf("\n");
     }
     printf("\n");
     memset(res.a,0,sizeof(res.a));
     res.a[0][0]=res.a[1][1]=res.a[2][2]=1;                  //将res.a初始化为单位矩阵 
}

void calc(int n)
{
     while(n)
     {
             if(n&1)
                    res=multiply(res,origin);
             n>>=1;
             origin=multiply(origin,origin);
     }
     printf("%d次幂结果如下:\n",n);
     for(int i=0;i<3;i++)
     {
             for(int j=0;j<3;j++)
                     printf("%8d",res.a[i][j]);
             printf("\n");
     }
     printf("\n");
}
int main()
{
    while(cin>>N)
    {
            init();
            calc(N);
    }
    return 0;
}

你可能感兴趣的:(矩阵快速幂,矩阵乘法快速优化)