Word Ladder
Given two words (beginWord and endWord), and a dictionary, find the length of shortest transformation sequence from beginWord to endWord, such that:
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
Note:
解题思路:
第一的想法是用一个图来记录相邻关系,然后将问题转化成图的最短路径问题。
class Solution { public: int ladderLength(string beginWord, string endWord, unordered_set<string>& wordDict) { if(beginWord == endWord){ return 1; } if(isNeibor(beginWord, endWord)){ return 2; } if(wordDict.find(beginWord)==wordDict.end()){ wordDict.insert(beginWord); } if(wordDict.find(endWord)==wordDict.end()){ wordDict.insert(endWord); } //将set转化成vector vector<string> wordVect; for(unordered_set<string>::iterator it = wordDict.begin(); it!=wordDict.end(); it++){ wordVect.push_back(*it); } int len = wordVect.size(); vector<vector<int>> graph(len, vector<int>()); //邻接表存储图 int beginIndex = -1; int endIndex = -1; for(int i=0; i<len; i++){ if(beginWord == wordVect[i]){ beginIndex = i; } if(endWord == wordVect[i]){ endIndex = i; } for(int j=i+1; j<len; j++){ if(isNeibor(wordVect[i], wordVect[j])){ graph[i].push_back(j); graph[j].push_back(i); } } } vector<int> pre(len, -1); //某个节点的前驱节点 pre[beginIndex] = beginIndex; queue<int> q({beginIndex}); //广度优先法 bool flag = false; //是否已经找到了路径 while(!q.empty()){ int c = q.front(); q.pop(); for(int i=0; i<graph[c].size(); i++){ if(pre[graph[c][i]]<0){ pre[graph[c][i]] = c; q.push(graph[c][i]); if(graph[c][i]==endIndex){ flag = true; break; } } } if(flag){ break; } } if(!flag){ return 0; } int result = 1; int c = endIndex; while(pre[c]!=c){ result++; c = pre[c]; } return result; } bool isNeibor(const string& str1, const string& str2){ int len = str1.length(); if(len!=str2.length()){ return false; } int c = 0; for(int i=0; i<len; i++){ if(str1[i]!=str2[i]){ c++; } } return c==1; } };