# Back-Propagation Neural Networks # import math import random import string random.seed(0) # calculate a random number where: a <= rand < b def rand(a, b): return (b-a)*random.random() + a # Make a matrix (we could use NumPy to speed this up) def makeMatrix(I, J, fill=0.0): m = [] for i in range(I): m.append([fill]*J) return m # our sigmoid function, tanh is a little nicer than the standard 1/(1+e^-x) #使用双正切函数代替logistic函数 def sigmoid(x): return math.tanh(x) # derivative of our sigmoid function, in terms of the output (i.e. y) # 双正切函数的导数,在求取输出层和隐藏侧的误差项的时候会用到 def dsigmoid(y): return 1.0 - y**2 class NN: def __init__(self, ni, nh, no): # number of input, hidden, and output nodes # 输入层,隐藏层,输出层的数量,三层网络 self.ni = ni + 1 # +1 for bias node self.nh = nh self.no = no # activations for nodes self.ai = [1.0]*self.ni self.ah = [1.0]*self.nh self.ao = [1.0]*self.no # create weights #生成权重矩阵,每一个输入层节点和隐藏层节点都连接 #每一个隐藏层节点和输出层节点链接 #大小:self.ni*self.nh self.wi = makeMatrix(self.ni, self.nh) #大小:self.ni*self.nh self.wo = makeMatrix(self.nh, self.no) # set them to random vaules #生成权重,在-0.2-0.2之间 for i in range(self.ni): for j in range(self.nh): self.wi[i][j] = rand(-0.2, 0.2) for j in range(self.nh): for k in range(self.no): self.wo[j][k] = rand(-2.0, 2.0) # last change in weights for momentum #? self.ci = makeMatrix(self.ni, self.nh) self.co = makeMatrix(self.nh, self.no) def update(self, inputs): if len(inputs) != self.ni-1: raise ValueError('wrong number of inputs') # input activations # 输入的激活函数,就是y=x; for i in range(self.ni-1): #self.ai[i] = sigmoid(inputs[i]) self.ai[i] = inputs[i] # hidden activations #隐藏层的激活函数,求和然后使用压缩函数 for j in range(self.nh): sum = 0.0 for i in range(self.ni): #sum就是《ml》书中的net sum = sum + self.ai[i] * self.wi[i][j] self.ah[j] = sigmoid(sum) # output activations #输出的激活函数 for k in range(self.no): sum = 0.0 for j in range(self.nh): sum = sum + self.ah[j] * self.wo[j][k] self.ao[k] = sigmoid(sum) return self.ao[:] #反向传播算法 targets是样本的正确的输出 def backPropagate(self, targets, N, M): if len(targets) != self.no: raise ValueError('wrong number of target values') # calculate error terms for output #计算输出层的误差项 output_deltas = [0.0] * self.no for k in range(self.no): #计算k-o error = targets[k]-self.ao[k] #计算书中公式4.14 output_deltas[k] = dsigmoid(self.ao[k]) * error # calculate error terms for hidden #计算隐藏层的误差项,使用《ml》书中的公式4.15 hidden_deltas = [0.0] * self.nh for j in range(self.nh): error = 0.0 for k in range(self.no): error = error + output_deltas[k]*self.wo[j][k] hidden_deltas[j] = dsigmoid(self.ah[j]) * error # update output weights # 更新输出层的权重参数 # 这里可以看出,本例使用的是带有“增加冲量项”的BPANN # 其中,N为学习速率 M为充量项的参数 self.co为冲量项 # N: learning rate # M: momentum factor for j in range(self.nh): for k in range(self.no): change = output_deltas[k]*self.ah[j] self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k] self.co[j][k] = change #print N*change, M*self.co[j][k] # update input weights #更新输入项的权重参数 for i in range(self.ni): for j in range(self.nh): change = hidden_deltas[j]*self.ai[i] self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j] self.ci[i][j] = change # calculate error #计算E(w) error = 0.0 for k in range(len(targets)): error = error + 0.5*(targets[k]-self.ao[k])**2 return error #测试函数,用于测试训练效果 def test(self, patterns): for p in patterns: print(p[0], '->', self.update(p[0])) def weights(self): print('Input weights:') for i in range(self.ni): print(self.wi[i]) print() print('Output weights:') for j in range(self.nh): print(self.wo[j]) def train(self, patterns, iterations=1000, N=0.5, M=0.1): # N: learning rate # M: momentum factor for i in range(iterations): error = 0.0 for p in patterns: inputs = p[0] targets = p[1] self.update(inputs) error = error + self.backPropagate(targets, N, M) if i % 100 == 0: print('error %-.5f' % error) def demo(): # Teach network XOR function pat = [ [[0,0], [0]], [[0,1], [1]], [[1,0], [1]], [[1,1], [0]] ] # create a network with two input, two hidden, and one output nodes n = NN(2, 2, 1) # train it with some patterns n.train(pat) # test it n.test(pat) if __name__ == '__main__': demo()
>>> ================================ RESTART ================================
>>>
error 0.94250
error 0.04287
error 0.00348
error 0.00164
error 0.00106
error 0.00078
error 0.00125
error 0.00053
error 0.00044
error 0.00038
([0, 0], '->', [0.03668584043139609])
([0, 1], '->', [0.9816625517128087])
([1, 0], '->', [0.9815264813097478])
([1, 1], '->', [-0.03146072993485337])
>>>