最近在打基础,大致都和向量有关,从比较基础的人工智能常用算法开始,以下是对BP算法研究的一个小节。
本文只是自我思路的整理,其中举了个例子,已经对一些难懂的地方做了解释,有兴趣恰好学到人工智能对这块不能深入理解的,可以参考本文。
通过带*的权重值重新计算误差,发现误差为0.18,比老误差0.19小,则继续迭代,得神经元的计算结果更加逼近目标值0.5
感想
在一个复杂样本空间下,对输入和输出进行拟合
(1) 多少个hidden unit才能符合需要(hidden unit就是图中的P,Q)
(2) 多少层unit才能符合需要(本例为1层)
(3) 如果有n层,每层m个unit,k个输入,1个输出,那么就有K*m^(n+1)条边,每条边有一个权重值,这个计算量非常巨大
(4) 如果k个输入,1个输出,相当于将k维空间,投射到一个1维空间,是否可以提供足够的准确性,如果是k个输入,j个输出,j比k大,是否是一个升维的过程,是否有价值?
收获
1) 了解偏导。
2) 了解梯度。
3) 产生新的思考
参考文献:
1 http://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)
2 http://www.rgu.ac.uk/files/chapter3%20-%20bp.pdf
3 http://www.cedar.buffalo.edu/~srihari/CSE574/Chap5/Chap5.3-BackProp.pdf
验证代码:
#include "stdio.h"
#include <math.h>
const double e = 2.7182818;
int main(void)
{
double input[] = {0.35,0.9};
double matrix_1[2][2]={
{0.1,0.4},
{0.8,0.6},
};
double matrix_2[] = { 0.3,0.9 };
for(int s= 0; s<1000; ++s)
{
double tmp[] = {0.0,0.0};
double value = 0.0;
{
for(int i = 0;i<2;++i)
{
for(int j = 0;j<2;++j)
{
tmp[i] += input[j]*matrix_1[j][i];
}
tmp[i] = 1/(1+pow(e,-1*tmp[i]));
}
for(int i = 0;i<2;++i)
{
value += tmp[i]*matrix_2[i];
}
value = 1/(1+pow(e,-1*value));
}
double RMSS = (0.5)*( value - 0.5)*(value-0.5);
printf("%f,%f\n",value,RMSS);
if(value - 0.5 < 0.01)
{
break;
}
double E = value - 0.5;
matrix_2[0] = matrix_2[0] - E*value*(1-value)*tmp[0];
matrix_2[1] = matrix_2[1] - E*value*(1-value)*tmp[1];
//printf("##%f,%f\n",matrix_2[0],matrix_2[1]);
matrix_1[0][0] = matrix_1[0][0] - E*value*(1-value)*matrix_2[0]*tmp[0]*(1-tmp[0])*matrix_1[0][0];
matrix_1[1][0] = matrix_1[1][0] - E*value*(1-value)*matrix_2[0]*tmp[0]*(1-tmp[0])*matrix_1[1][0];
matrix_1[0][1] = matrix_1[0][1] - E*value*(1-value)*matrix_2[0]*tmp[0]*(1-tmp[1])*matrix_1[0][1];
matrix_1[1][1] = matrix_1[1][1] - E*value*(1-value)*matrix_2[0]*tmp[0]*(1-tmp[1])*matrix_1[1][1];
//printf("##%f,%f\n",matrix_1[0][0],matrix_1[1][0]);
//printf("##%f,%f\n",matrix_1[0][1],matrix_1[1][1]);
}
return 0;
}
给出一个带有”增加充量项“BPANN。
有两个输入单元,两个隐藏单元,一个输出单元,三层
# Back-Propagation Neural Networks # import math import random import string random.seed(0) # calculate a random number where: a <= rand < b def rand(a, b): return (b-a)*random.random() + a # Make a matrix (we could use NumPy to speed this up) def makeMatrix(I, J, fill=0.0): m = [] for i in range(I): m.append([fill]*J) return m # our sigmoid function, tanh is a little nicer than the standard 1/(1+e^-x) #使用双正切函数代替logistic函数 def sigmoid(x): return math.tanh(x) # derivative of our sigmoid function, in terms of the output (i.e. y) # 双正切函数的导数,在求取输出层和隐藏侧的误差项的时候会用到 def dsigmoid(y): return 1.0 - y**2 class NN: def __init__(self, ni, nh, no): # number of input, hidden, and output nodes # 输入层,隐藏层,输出层的数量,三层网络 self.ni = ni + 1 # +1 for bias node self.nh = nh self.no = no # activations for nodes self.ai = [1.0]*self.ni self.ah = [1.0]*self.nh self.ao = [1.0]*self.no # create weights #生成权重矩阵,每一个输入层节点和隐藏层节点都连接 #每一个隐藏层节点和输出层节点链接 #大小:self.ni*self.nh self.wi = makeMatrix(self.ni, self.nh) #大小:self.ni*self.nh self.wo = makeMatrix(self.nh, self.no) # set them to random vaules #生成权重,在-0.2-0.2之间 for i in range(self.ni): for j in range(self.nh): self.wi[i][j] = rand(-0.2, 0.2) for j in range(self.nh): for k in range(self.no): self.wo[j][k] = rand(-2.0, 2.0) # last change in weights for momentum #? self.ci = makeMatrix(self.ni, self.nh) self.co = makeMatrix(self.nh, self.no) def update(self, inputs): if len(inputs) != self.ni-1: raise ValueError('wrong number of inputs') # input activations # 输入的激活函数,就是y=x; for i in range(self.ni-1): #self.ai[i] = sigmoid(inputs[i]) self.ai[i] = inputs[i] # hidden activations #隐藏层的激活函数,求和然后使用压缩函数 for j in range(self.nh): sum = 0.0 for i in range(self.ni): #sum就是《ml》书中的net sum = sum + self.ai[i] * self.wi[i][j] self.ah[j] = sigmoid(sum) # output activations #输出的激活函数 for k in range(self.no): sum = 0.0 for j in range(self.nh): sum = sum + self.ah[j] * self.wo[j][k] self.ao[k] = sigmoid(sum) return self.ao[:] #反向传播算法 targets是样本的正确的输出 def backPropagate(self, targets, N, M): if len(targets) != self.no: raise ValueError('wrong number of target values') # calculate error terms for output #计算输出层的误差项 output_deltas = [0.0] * self.no for k in range(self.no): #计算k-o error = targets[k]-self.ao[k] #计算书中公式4.14 output_deltas[k] = dsigmoid(self.ao[k]) * error # calculate error terms for hidden #计算隐藏层的误差项,使用《ml》书中的公式4.15 hidden_deltas = [0.0] * self.nh for j in range(self.nh): error = 0.0 for k in range(self.no): error = error + output_deltas[k]*self.wo[j][k] hidden_deltas[j] = dsigmoid(self.ah[j]) * error # update output weights # 更新输出层的权重参数 # 这里可以看出,本例使用的是带有“增加冲量项”的BPANN # 其中,N为学习速率 M为充量项的参数 self.co为冲量项 # N: learning rate # M: momentum factor for j in range(self.nh): for k in range(self.no): change = output_deltas[k]*self.ah[j] self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k] self.co[j][k] = change #print N*change, M*self.co[j][k] # update input weights #更新输入项的权重参数 for i in range(self.ni): for j in range(self.nh): change = hidden_deltas[j]*self.ai[i] self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j] self.ci[i][j] = change # calculate error #计算E(w) error = 0.0 for k in range(len(targets)): error = error + 0.5*(targets[k]-self.ao[k])**2 return error #测试函数,用于测试训练效果 def test(self, patterns): for p in patterns: print(p[0], '->', self.update(p[0])) def weights(self): print('Input weights:') for i in range(self.ni): print(self.wi[i]) print() print('Output weights:') for j in range(self.nh): print(self.wo[j]) def train(self, patterns, iterations=1000, N=0.5, M=0.1): # N: learning rate # M: momentum factor for i in range(iterations): error = 0.0 for p in patterns: inputs = p[0] targets = p[1] self.update(inputs) error = error + self.backPropagate(targets, N, M) if i % 100 == 0: print('error %-.5f' % error) def demo(): # Teach network XOR function pat = [ [[0,0], [0]], [[0,1], [1]], [[1,0], [1]], [[1,1], [0]] ] # create a network with two input, two hidden, and one output nodes n = NN(2, 2, 1) # train it with some patterns n.train(pat) # test it n.test(pat) if __name__ == '__main__': demo()