Hbase逻辑视图
注意上图中的英文说明
Hbase基本概念
RowKey:是Byte array,是表中每条记录的“主键”,方便快速查找,Rowkey的设计非常重要。
Column Family:列族,拥有一个名称(string),包含一个或者多个相关列
Column:属于某一个columnfamily,familyName:columnName,每条记录可动态添加
Version Number:类型为Long,默认值是系统时间戳,可由用户自定义
Value(Cell):Byte array
物理存储:
1、Table中所有行都按照row key的字典序排列;
2、Table在行的方向上分割为多个Region;
3、Region按大小分割的,每个表开始只有一个region,随着数据增多,region不断增大,当增大到一个阀值的时候,region就会等分会两个新的region,之后会有越来越多的region;
4、Region是Hbase中分布式存储和负载均衡的最小单元,不同Region分布到不同RegionServer上。
5、Region虽然是分布式存储的最小单元,但并不是存储的最小单元。Region由一个或者多个Store组成,每个store保存一个columns family;每个Strore又由一个memStore和0至多个StoreFile组成,StoreFile包含HFile;memStore存储在内存中,StoreFile存储在HDFS上。
Hbase基本组件说明:
Client
包含访问HBase的接口,并维护cache来加快对HBase的访问,比如region的位置信息
Master
为Region server分配region
负责Region server的负载均衡
发现失效的Region server并重新分配其上的region
管理用户对table的增删改查操作
Region Server
Regionserver维护region,处理对这些region的IO请求
Regionserver负责切分在运行过程中变得过大的region
Zookeeper作用
通过选举,保证任何时候,集群中只有一个master,Master与RegionServers 启动时会向ZooKeeper注册
存贮所有Region的寻址入口
实时监控Region server的上线和下线信息。并实时通知给Master
存储HBase的schema和table元数据
默认情况下,HBase 管理ZooKeeper 实例,比如, 启动或者停止ZooKeeper
Zookeeper的引入使得Master不再是单点故障
Write-Ahead-Log(WAL)
该机制用于数据的容错和恢复:
每个HRegionServer中都有一个HLog对象,HLog是一个实现Write Ahead Log的类,在每次用户操作写入MemStore的同时,也会写一份数据到HLog文件中(HLog文件格式见后续),HLog文件定期会滚动出新的,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知到,HMaster首先会处理遗留的 HLog文件,将其中不同Region的Log数据进行拆分,分别放到相应region的目录下,然后再将失效的region重新分配,领取 到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复
HBase容错性
ZooKeeper--> -ROOT-(单Region)--> .META.--> 用户表
-ROOT-Zookeeper中记录了-ROOT-表的location。
.META.表包含所有的用户空间region列表,以及RegionServer的服务器地址。
storing large amounts of data(100s of TBs)
need high write throughput
need efficient random access(key lookups) within large data sets
need to scale gracefully with data
for structured and semi-structured data
don't need fullRDMS capabilities(cross row/cross table transaction, joins,etc.)
大数据量存储,大数据量高并发操作
需要对数据随机读写操作
读写访问均是非常简单的操作
不支持数据更新
1、http://www.alidata.org/archives/1509(存储模型比较详细)
2、http://www.searchtb.com/2011/01/understanding-hbase.html(技术框架以及存储模型)
3、http://wenku.baidu.com/view/b46eadd228ea81c758f578f4.html(读和写的流程比较详细)
Hbase对Mapreduce API进行了扩展,方便Mapreduce任务读写HTable数据。
说明:从日志表中,统计每个IP访问网站目录的总数
package man.ludq.hbase; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil; import org.apache.hadoop.hbase.mapreduce.TableMapper; import org.apache.hadoop.hbase.mapreduce.TableReducer; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; public class ExampleTotalMapReduce{ public static void main(String[] args) { try{ Configuration config = HBaseConfiguration.create(); Job job = new Job(config,"ExampleSummary"); job.setJarByClass(ExampleTotalMapReduce.class); // class that contains mapper and reducer Scan scan = new Scan(); scan.setCaching(500); // 1 is the default in Scan, which will be bad for MapReduce jobs scan.setCacheBlocks(false); // don't set to true for MR jobs // set other scan attrs //scan.addColumn(family, qualifier); TableMapReduceUtil.initTableMapperJob( "access-log", // input table scan, // Scan instance to control CF and attribute selection MyMapper.class, // mapper class Text.class, // mapper output key IntWritable.class, // mapper output value job); TableMapReduceUtil.initTableReducerJob( "total-access", // output table MyTableReducer.class, // reducer class job); job.setNumReduceTasks(1); // at least one, adjust as required boolean b = job.waitForCompletion(true); if (!b) { throw new IOException("error with job!"); } } catch(Exception e){ e.printStackTrace(); } } public static class MyMapper extends TableMapper<Text, IntWritable> { private final IntWritable ONE = new IntWritable(1); private Text text = new Text(); public void map(ImmutableBytesWritable row, Result value, Context context) throws IOException, InterruptedException { String ip = Bytes.toString(row.get()).split("-")[0]; String url = new String(value.getValue(Bytes.toBytes("info"), Bytes.toBytes("url"))); text.set(ip+"&"+url); context.write(text, ONE); } } public static class MyTableReducer extends TableReducer<Text, IntWritable, ImmutableBytesWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } Put put = new Put(key.getBytes()); put.add(Bytes.toBytes("info"), Bytes.toBytes("count"), Bytes.toBytes(String.valueOf(sum))); context.write(null, put); } } }
参考文档:
常用Java API的用法:
1、加载配置
Configuration config = HBaseConfiguration.create();
//可以自定义配置,也可以从自定义配置文件中读取
/*config.set("hbase.zookeeper.property.clientPort", "4181");
config.set("hbase.zookeeper.quorum", "hadoop.datanode5.com,hadoop.datanode2.com,hadoop.datanode3.com");
config.set("hbase.master", "hadoop.datanode3.com\\:600000");*/
2、表的创建、表信息修改、表删除
HBaseAdmin admin = new HBaseAdmin(config); //创建表 HTableDescriptor htd = new HTableDescriptor(tableName); htd.addFamily(new HColumnDescriptor("cf1")); htd.addFamily(new HColumnDescriptor("cf2")); admin.createTable(htd); //修改表信息 admin.disableTable(tableName); // modifying existing ColumnFamily admin.modifyColumn(tableName, new HColumnDescriptor("cf1")); admin.enableTable(tableName); //删除表 admin.disableTable(Bytes.toBytes(tableName)); admin.deleteTable(Bytes.toBytes(tableName));
3、添加记录
/** 在多次使用时,建议用HTablePool HTable table = new HTable(config, tableName); => HTablePool pool = new HTablePool(config, 1000); HTableInterface table = pool.getTable(tableName);*/ HTable table = new HTable(config, tableName); /** * 在插入操作时,默认不适用任何缓存 * 可自定义使用缓存,以及缓存大小 * 每个任务最后需要手工调用 flushCommits(); */ /*table.setAutoFlush(false); table.setWriteBufferSize(1024);*/ Put put1 = new Put(Bytes.toBytes(rowKey)); if (ts == 0) { put1.add(Bytes.toBytes(family), Bytes.toBytes(qualifier), Bytes.toBytes(value)); } else { //自定义版本时,从自定义的版本号,类型为long put1.add(Bytes.toBytes(family), Bytes.toBytes(qualifier), ts,Bytes.toBytes(value)); } table.put(put1); //table.flushCommits();4、查询,根据Rowkey查询
Scan scan = new Scan(); //默认缓存大小为1,设置成一个合理的值,可以减少scan过程中next()的时间开销,代价是客户端的内存 scan.setCaching(500); scan.setCacheBlocks(false); //根据startRowKey、endRowKey查询 //Scan scan = new Scan(Bytes.toBytes("startRowKey"), Bytes.toBytes("endRowKey")); //rowKey之外的过滤条件,在List中可以add; /**List<Filter> filters = new ArrayList<Filter>(); Filter filter = new SingleColumnValueFilter("familyName".getBytes(), "qualifierName".getBytes(), CompareOp.EQUAL, Bytes.toBytes("value")); filters.add(filter); scan.setFilter(new FilterList(filters));*/ ResultScanner scanner = table.getScanner(scan); System.out.println("scan result list:"); for (Result result : scanner) { System.out.println(Bytes.toString(result.getRow())); System.out.println(Bytes.toString(result.getValue(Bytes.toBytes("data"), Bytes.toBytes("data1")))); System.out.println(Bytes.toString(result.getValue(Bytes.toBytes("data"), Bytes.toBytes("data2")))); } scanner.close();参考:
1、http://www.taobaotest.com/blogs/1605
2、http://abloz.com/hbase/book.html#data_model_operations(官网示例)
参考文献:http://blog.csdn.net/woshiwanxin102213/article/details/17676961
Hbase的访问方式
1、Native Java API:最常规和高效的访问方式;
2、HBase Shell:HBase的命令行工具,最简单的接口,适合HBase管理使用;
3、Thrift Gateway:利用Thrift序列化技术,支持C++,PHP,Python等多种语言,适合其他异构系统在线访问HBase表数据;
4、REST Gateway:支持REST 风格的Http API访问HBase, 解除了语言限制;
5、MapReduce:直接使用MapReduce作业处理Hbase数据;
6、使用Pig/hive处理Hbase数据。
常用Hbase Shell的基本用法:
hbase shell常用的操作命令有create,describe,disable,drop,list,scan,put,get,delete,deleteall,count,status等,通过help可以看到详细的用法。
1、打开Hbase shell
hadoop@ubuntu:/usr$ hbase shell
2、查询表List
hbase(main):001:0> list
3、建表(create)
hbase(main):008:0> create 'scores','grad','course'
4、添加数据(表scores,rowkey为zkb 列族grad,列名为”” 值为5)
hbase(main):013:0> put 'scores','zkd','grade:','5'
5、 给zkb这一行的数据的列族course添加一列<math,97> (put)
hbase(main):016:0> put 'scores','zkd','course:math','97'
6、查询某一条数据(get),根据rowkey查找
hbase(main):024:0> get 'scores','zkd'
7、查询多条数据(scan)
格式:scan命令可以指定startrow,stoprow来scan多个row,例如:scan 'user_test',{COLUMNS =>'info:username',LIMIT =>10, STARTROW => 'test',STOPROW=>'test2'}, {}里边的是可选项
hbase(main):003:0> scan 'scores',{COLUMNS=>'course:art',LIMIT=>1,STARTROW=>'a',STOPROW=>'z'}
8、删除记录(只有一个column)
delete 'scores','1','course:art'
9、删除rowkey的所有column
deleteall 'scores','1'
10、删除scores表
hbase(main):004:0> disable 'scores'
hbase(main):005:0> drop 'scores'
参考:
http://www.taobaotest.com/blogs/qa?bid=13871
http://blog.csdn.net/woshiwanxin102213/article/details/176114571.1、Column Family
由于Hbase是一个面向列族的存储器,调优和存储都是在列族这个层次上进行的,最好使列族成员都有相同的"访问模式(access pattern)"和大小特征;
在一张表里不要定义太多的column family。目前Hbase并不能很好的处理超过2~3个column family的表。因为某个column family在flush的时候,它邻近的column family也会因关联效应被触发flush,最终导致系统产生更多的I/O。
1.2、Row Key
Row Key 设计原则:
1)Rowkey长度原则,Rowkey是一个二进制码流,可以是任意字符串,最大长度64KB,实际应用中一般为10~100bytes,存为byte[]字节数组,一般设计成定长的。建议是越短越好,不要超过16个字节。原因一数据的持久化文件HFile中是按照KeyValue存储的,如果Rowkey过长比如100个字节,1000万列数据光Rowkey就要占用100*1000万=10亿个字节,将近1G数据,这会极大影响HFile的存储效率;原因二MemStore将缓存部分数据到内存,如果Rowkey字段过长内存的有效利用率会降低,系统将无法缓存更多的数据,这会降低检索效率。因此Rowkey的字节长度越短越好。原因三目前操作系统是都是64位系统,内存8字节对齐。控制在16个字节,8字节的整数倍利用操作系统的最佳特性。
2)是Rowkey散列原则,如果Rowkey是按时间戳的方式递增,不要将时间放在二进制码的前面,建议将Rowkey的高位作为散列字段,由程序循环生成,低位放时间字段,这样将提高数据均衡分布在每个Regionserver实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息将产生所有新数据都在一个RegionServer上堆积的热点现象,这样在做数据检索的时候负载将会集中在个别RegionServer,降低查询效率。
3)Rowkey唯一原则,必须在设计上保证其唯一性。
row key是按照字典序存储,因此,设计row key时,要充分利用这个排序特点,将经常一起读取的数据存储到一块,将最近可能会被访问的数据放在一块。
举个例子:如果最近写入HBase表中的数据是最可能被访问的,可以考虑将时间戳作为row key的一部分,由于是字典序排序,所以可以使用Long.MAX_VALUE – timestamp作为row key,这样能保证新写入的数据在读取时可以被快速命中。
1.3、 In Memory
创建表的时候,可以通过HColumnDescriptor.setInMemory(true)将表放到RegionServer的缓存中,保证在读取的时候被cache命中。
1.4 、Max Version
创建表的时候,可以通过HColumnDescriptor.setMaxVersions(intmaxVersions)设置表中数据的最大版本,如果只需要保存最新版本的数据,那么可以设置setMaxVersions(1)。
1.5、 Time to Live(设置数据存储的生命周期)
创建表的时候,可以通过HColumnDescriptor.setTimeToLive(inttimeToLive)设置表中数据的存储生命期,过期数据将自动被删除,例如如果只需要存储最近两天的数据,那么可以设置setTimeToLive(2 * 24 * 60 * 60)。
1.6、 Compact & Split
在HBase中,数据在更新时首先写入WAL 日志(HLog)和内存(MemStore)中,MemStore中的数据是排序的,当MemStore累计到一定阈值时,就会创建一个新的MemStore,并且将老的MemStore添加到flush队列,由单独的线程flush到磁盘上,成为一个StoreFile。于此同时, 系统会在zookeeper中记录一个redo point,表示这个时刻之前的变更已经持久化了(minor compact)。
StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更新其实是不断追加的操作。当一个Store中的StoreFile达到一定的阈值后,就会进行一次合并(major compact),将对同一个key的修改合并到一起,形成一个大的StoreFile,当StoreFile的大小达到一定阈值后,又会对 StoreFile进行分割(split),等分为两个StoreFile。
由于对表的更新是不断追加的,处理读请求时,需要访问Store中全部的StoreFile和MemStore,将它们按照row key进行合并,由于StoreFile和MemStore都是经过排序的,并且StoreFile带有内存中索引,通常合并过程还是比较快的。
实际应用中,可以考虑必要时手动进行major compact,将同一个row key的修改进行合并形成一个大的StoreFile。同时,可以将StoreFile设置大些,减少split的发生。
1.7、 Pre-Creating Regions
默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都向这一个region写数据,直到这个region足够大了才进行切分。一种可以加快批量写入速度的方法是通过预先创建一些空的regions,这样当数据写入HBase时,会按照region分区情况,在集群内做数据的负载均衡。 有关预分区,详情参见:TableCreation: Pre-Creating Regions,下面是一个例子:
2.1 多HTable并发写
创建多个HTable客户端用于写操作,提高写数据的吞吐量,一个例子:
2.2 HTable参数设置
2.2.1 Auto Flush
通过调用HTable.setAutoFlush(false)方法可以将HTable写客户端的自动flush关闭,这样可以批量写入数据到 HBase,而不是有一条put就执行一次更新,只有当put填满客户端写缓存时,才实际向HBase服务端发起写请求。默认情况下auto flush是开启的。保证最后手动HTable.flushCommits()或HTable.close()。
2.2.2 Write Buffer
通过调用HTable.setWriteBufferSize(writeBufferSize)方法可以设置 HTable客户端的写buffer大小,如果新设置的buffer小于当前写buffer中的数据时,buffer将会被flush到服务端。其 中,writeBufferSize的单位是byte字节数,可以根据实际写入数据量的多少来设置该值。
2.2.3 WAL Flag
在HBae中,客户端向集群中的RegionServer提交数据时(Put/Delete操作),首先会先写WAL(Write Ahead Log)日志(即HLog,一个RegionServer上的所有Region共享一个HLog),只有当WAL日志写成功后,再接着写 MemStore,然后客户端被通知提交数据成功;如果写WAL日志失败,客户端则被通知提交失败。这样做的好处是可以做到RegionServer宕机 后的数据恢复。
因此,对于相对不太重要的数据,可以在Put/Delete操作时,通过调用Put.setWriteToWAL(false)或Delete.setWriteToWAL(false)函数,放弃写WAL日志,从而提高数据写入的性能。
值得注意的是:谨慎选择关闭WAL日志,因为这样的话,一旦RegionServer宕机,Put/Delete的数据将会无法根据WAL日志进行恢复。
2.3 批量写
通过调用HTable.put(Put)方法可以将一个指定的row key记录写入HBase,同样HBase提供了另一个方法:通过调用HTable.put(List<Put>)方法可以将指定的row key列表,批量写入多行记录,这样做的好处是批量执行,只需要一次网络I/O开销,这对于对数据实时性要求高,网络传输RTT高的情景下可能带来明显的性能提升。
2.4 多线程并发写
在客户端开启多个HTable写线程,每个写线程负责一个HTable对象的flush操作,这样结合定时flush和写 buffer(writeBufferSize),可以既保证在数据量小的时候,数据可以在较短时间内被flush(如1秒内),同时又保证在数据量大的 时候,写buffer一满就及时进行flush。下面给个具体的例子:
3.1 多HTable并发读
创建多个HTable客户端用于读操作,提高读数据的吞吐量,一个例子:
3.2 HTable参数设置
3.2.1 Scanner Caching
hbase.client.scanner.caching配置项可以设置HBase scanner一次从服务端抓取的数据条数,默认情况下一次一条。通过将其设置成一个合理的值,可以减少scan过程中next()的时间开销,代价是 scanner需要通过客户端的内存来维持这些被cache的行记录。
有三个地方可以进行配置:1)在HBase的conf配置文件中进行配置;2)通过调用HTable.setScannerCaching(int scannerCaching)进行配置;3)通过调用Scan.setCaching(int caching)进行配置。三者的优先级越来越高。
3.2.2 Scan AttributeSelection
scan时指定需要的Column Family,可以减少网络传输数据量,否则默认scan操作会返回整行所有Column Family的数据。
3.2.3 Close ResultScanner
通过scan取完数据后,记得要关闭ResultScanner,否则RegionServer可能会出现问题(对应的Server资源无法释放)。
3.3 批量读
通过调用HTable.get(Get)方法可以根据一个指定的row key获取一行记录,同样HBase提供了另一个方法:通过调用HTable.get(List<Get>)方法可以根据一个指定的rowkey列表,批量获取多行记录,这样做的好处是批量执行,只需要一次网络I/O开销,这对于对数据实时性要求高而且网络传输RTT高的情景下可能带来明显 的性能提升。
3.4 多线程并发读
在客户端开启多个HTable读线程,每个读线程负责通过HTable对象进行get操作。下面是一个多线程并发读取HBase,获取店铺一天内各分钟PV值的例子:
3.5 缓存查询结果
对于频繁查询HBase的应用场景,可以考虑在应用程序中做缓存,当有新的查询请求时,首先在缓存中查找,如果存在则直接返回,不再查询HBase;否则对HBase发起读请求查询,然后在应用程序中将查询结果缓存起来。至于缓存的替换策略,可以考虑LRU等常用的策略。
3.6 Blockcache
HBase上Regionserver的内存分为两个部分,一部分作为Memstore,主要用来写;另外一部分作为BlockCache,主要用于读。写请求会先写入Memstore,Regionserver会给每个region提供一个Memstore,当Memstore满64MB以后,会启动 flush刷新到磁盘。当Memstore的总大小超过限制时(heapsize * hbase.regionserver.global.memstore.upperLimit * 0.9),会强行启动flush进程,从最大的Memstore开始flush直到低于限制。读请求先到Memstore中查数据,查不到就到BlockCache中查,再查不到就会到磁盘上读,并把读的结果放入BlockCache。由于 BlockCache采用的是LRU策略,因此BlockCache达到上限(heapsize *hfile.block.cache.size * 0.85)后,会启动淘汰机制,淘汰掉最老的一批数据。一个Regionserver上有一个BlockCache和N个Memstore,它们的大小之和不能大于等于heapsize * 0.8,否则HBase不能启动。默认BlockCache为0.2,而Memstore为0.4。对于注重读响应时间的系统,可以将 BlockCache设大些,比如设置BlockCache=0.4,Memstore=0.39,以加大缓存的命中率。
http://blog.linezing.com/2012/03/hbase-performance-optimization(Hbase性能方法优化总结)
http://blog.csdn.net/woshiwanxin102213/article/details/18666657