数论-卡特兰数的应用

理论:     

       令h(1)=1,h(0)=1,catalan数满足递归式:

  h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2)
  另类递归式:
  h(n)=((4*n-2)/(n+1))*h(n-1);
  该递推关系的解为:
  h(n)=C(2n,n)/(n+1) (n=1,2,3,...)

 

 

应用如下:

1. 括号化问题

  矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)

      (不懂得话可以看杭电出的ACM讲义中的《特殊的数》那节)

2. 出栈次序问题

一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?
   分析:对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。
  在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。
  不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。
  反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。
  因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。
  显然,不符合要求的方案数为c(2n,n+1)。由此得出 输出序列的总数目= c(2n,n)-c(2n,n+1)=1/(n+1)*c(2n,n)
  (这个公式的下标是从h(0)=1开始的)
   类似:有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)(可以发现这个和 编程之美上的那题好像一样)

3. 凸多边形的三角剖分问题

求将一个 凸多边形区域分成三角形区域的方法数。
   类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
   类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?(  The number of ways 2n people, seated round a table, can shake hands in n pairs, without their arms crossing.)
 

4. 用给定节点组成二叉树的问题  

给定N个节点,能构成多少种不同的 二叉树?

  (能构成h(N)个)

 

其他:

http://www.mathoe.com/dispbbs.asp?boardid=89&ID=34522这个链接下面还有很多关于卡特兰数的题目。

 

参考:

http://baike.baidu.com/view/2499752.htm

http://hi.baidu.com/ask1568/blog/item/5ca3fea3b8099aa7caefd07a.html

http://hi.baidu.com/fangqingan/blog/item/777d743508bef51b90ef39ea.html

 

你可能感兴趣的:(编程,c,工作,table)